TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

Overview

tf-metal-experiments

TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

Setup

This is tested on M1 series Apple Silicon SOC only.

TensorFlow 2.x

  1. Follow the official instructions from Apple here
  2. Test that your Metal GPU is working by running tf.config.list_physical_devices("GPU"), you should see 1 GPU present (it is not named). Later when you actually use the GPU, there will be a more informative printout that says Metal device set to: Apple M1 Max or similar.
  3. Now you should be ready to run any TF code that doesn't require external libraries.

HuggingFace Transformers library

If you want to play around with Transformer models (with TF Metal backend of course), you will need to install the HuggingFace Transformers library.

  1. Install the regex library (I don't know why it has to be like this, but yeah): python3 -m pip install --upgrade regex --no-use-pep517. You might need do xcode-select --install if the above command doesn't work.
  2. pip install transfomers ipywidgets

Experiments and Benchmarks

After some trial and error, some initial benchmarks for what should be the approx best capability of the M1 Max. For all the cases here, increasing batch size does not seem to increase the throughput.

Power draw also doesn't seem to be able to exceed 40W. Power draw from the GPU (averaged over 1 second) can be measured with sudo powermetrics --samplers gpu_power -i1000 -n1.

Model GPU BatchSize Throughput Power Memory
ResNet50 M1 Max 32c 64 135 img/sec 40W 13 GB
MobileNetV2 M1 Max 32c 128 352 img/sec 37W 15 GB
DistilBERT M1 Max 32c 64 120 seq/sec 35W 9 GB
BERTLarge M1 Max 32c 32 18 seq/sec 36W 14 GB

The benchmark scripts used are included in this repo.

Reference Benchmarks from RTX 3090

Model GPU BatchSize Throughput Power
ResNet50 3090 64 957 img/sec 300W
MobileNetV2 3090 128 1927 img/sec 310W
DistilBERT 3090 64 1040 seq/sec 310W
BERTLarge 3090 32 164 seq/sec 320W

For 3090, same script is used, but additional optimization that leverage hardware (Tensor Core) and software (XLA compiler) not present/working on M1 is added. This corresponds to the following code segment added:

from tensorflow.keras import mixed_precision
tf.config.optimizer.set_jit(True)
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)
physical_devices = tf.config.list_physical_devices('GPU')

Also note that the 3090 is likely to perform better at larger batch sizes.

Measuring Achievable TFLOPS

We can use TF to write a matrix multiplication benchmark to try and estimate what is the max compute performance we can get out of a M1 Max. It seems we can get around ~8 TFLOPS for large enough problem (GEMM) sizes.

The plot can be generated using tflops_sweep.py.

Note that FP64 and FP16 performance appears to be non-existent. (the code automatically runs on CPU if FP64 or FP16 is specified as data type)

Owner
Timothy Liu
Deep Learning stuff and Open Source Enthusiast @OpenSUTD
Timothy Liu
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022