PyTorch implementation of the TTC algorithm

Overview

Trust-the-Critics

This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critics: Generatorless and Multipurpose WGANs with Initial Convergence Guarantees.

How to run this code

  • Create a Python virtual environment with Python 3.8 installed.
  • Install the necessary Python packages listed in the requirements.txt file (this can be done through pip install -r /path/to/requirements.txt).

In the example_shell_scripts folder, we include samples of shell scripts we used to run our experiments. We note that training generative models is computationally demanding, and thus requires adequate computational resources (i.e. running this on your laptop is not recommended).

TTC algorithm

The various experiments we run with TTC are described in Section 5 and Addendix B of the paper. Illustrating the flexibility of the TTC algorithm, the image generation, denoising and translation experiments can all be run using the ttc.py script; the only necessary changes are the source and target datasets. Running TTC with a given source and a given target will train and save several critic neural networks that can subsequently be used to push the source distribution towards the target distribution by applying the 'steptaker' function found in TTC_utils/steptaker.py once for each critic.

Necessary arguments for ttc.py are:

  • 'source' : The name of the distribution or dataset that is to be pushed towards the target (options are listed in ttc.py).
  • 'target' : The name of the target dataset (options are listed in ttc.py).
  • 'data' : The path of a directory where the necessary data is located. This includes the target dataset, in a format that can be accessed by a dataloader object obtained from the corresponding function in dataloader.py. Such a dataloader always belongs to the torch.utils.data.DataLoader class (e.g. if target=='mnist', then the corresponding dataloader will be an instance of torchvision.datasets.MNIST, and the MNIST dataset should be placed in 'data' in a way that reflects this). If the source is a dataset, it needs to be placed in 'data' as well. If source=='untrained_gen', then the untrained generator used to create the source distribution needs to be saved under 'data/ugen.pth'.
  • 'temp_dir' : The path of a directory where the trained critics will be saved, along with a few other files (including the log.pkl file that contains the step sizes). Despite the name, this folder isn't necessarily temporary.

Other optional arguments are described in a commented section at the top of the ttc.py script. Note that running ttc.py will only train the critics that the TTC algorithm uses to push the source distribution towards the target distribution, it will not actually push any samples from the source towards the target (as mentioned above, this is done using the steptaker function).

TTC image generation
For a generative experiment, run ttc.py with the source argument set to either 'noise' or 'untrained_gen' and the target of your choice. Then, run ttc_eval.py, which will use the saved critics and step sizes to push noise inputs towards the target distribution according to the TTC algorithm (using the steptaker function), and which will optionally evaluate generative performance with FID and/or MMD (FID is used in the paper). The arguments 'source', 'target', 'data', 'temp_dir' and 'model' for ttc_eval.py should be set to the same values as when running ttc.py. If evaluating FID, the folder specified by 'temp_dir' should contain a subdirectory named 'temp_dir/{target}test' (e.g. 'temp_dir/mnisttest' if target=='mnist') containing the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

TTC denoising
For a denoising experiment, run ttc.py with source=='noisybsds500' and target=='bsds500' (specifying a noise level with the 'sigma' argument). Then, run denoise_eval.py (with the same 'temp_dir', 'data' and 'model' arguments), which will add noise to images, denoise them using the TTC algorithm and the saved critics, and evaluate PSNR's.

TTC Monet translation
For a denoising experiment, run ttc.py with source=='photo' and target=='monet'. Then run ttc_eval.py (with the same 'source', 'target', 'temp_dir', 'data' and 'model' arguments, and presumably with no FID or MMD evaluation), which will sample realistic images from the source and make them look like Monet paintings.

WGAN misalignment

The WGAN misalignment experiments are described in Section 3 and Appendix B.1 of the paper, and are run using misalignments.py. This script trains a WGAN while, at some iterations, measuring how misaligned the movement of generated samples caused by updating the generator is from the critic's gradient. The generator's FID is also measured at the same iterations.

The required arguments for misalignments.py are:

  • 'target' : The dataset used to train the WGAN - can be either 'mnist' or 'fashion' (for Fashion-MNIST).
  • 'data' : The path of a folder where the MNIST (or Fashion-MNIST) dataset is located, in a format that can be accessed by an instance of the torchvision.datasets.MNIST class (resp torchvision.datasets.FashionMNIST).
  • 'fid_data' : The path of a folder containing the test data from the MNIST dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).
  • 'checkpoints' : A string of integers separated by underscores. The integers specify the iterations at which misalignments and FID are computed, and training will continue until the largest iteration is reached.

Other optional arguments (including 'results_path' and 'temp_dir') are described in a commented section at the top of the misalignments.py. The misalignment results reported in the paper (Tables 1 and 5, and Figure 3), correspond to using the default hyperparameters and to setting the 'checkpoints' argument roughly equal to '10_25000_40000', with '10' corresponding the early stage in training, '25000' to the mid stage, and '40000' to the late stage.

WGAN generation

For completeness we include the code that was used to obtain the WGAN FID statistics in Table 3 of the paper, which includes the wgan_gp.py and wgan_gp_eval.py scripts. The former trains a WGAN with the InfoGAN architecture on the dataset specified by the 'target' argument, saving generator model dictionaries in the folder specified by 'temp_dir' at ten equally spaced stages in training. The wgan_gp_eval.py script evaluates the performance of the generator with the different model dictionaries in 'temp_dir'.

The necessary arguments to run wgan_gp.py are:

  • 'target' : The name of the dataset to generate (can be either 'mnist', 'fashion' or 'cifar10').
  • 'data' : Folder where the dataset is located.
  • 'temp_dir' : Folder where the model dictionaries are saved.

Once wgan_gp.py has run, wgan_gp_eval.py should be called with the same arguments for 'target', 'data' and 'temp_dir', and setting the 'model' argument to 'infogan'. If evaluating FID, the 'temp_dir' folder needs to contain the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

Reproducibility

This repository contains two branches: 'main' and 'reproducible'. You are currectly viewing the 'main' branch, which contains a clean version of the code meant to be easy to read and interpret and to run more efficiently than the version on the 'reproducible' branch. The results obtained by running the code on this branch should be nearly (but not perfectly) identical to the results stated in the papers, the differences stemming from the randomness inherent to the experiments. The 'reproducible' branch allows one to replicate exactly the results stated in the paper (random seeds are specified) for the TTC experiments.

Computing architecture and running times

We ran different versions of the code presented here on Compute Canada (https://www.computecanada.ca/) clusters, always using a single NVIDIA V100 Volta or NVIDIA A100 Ampere GPU. Here are rough estimations of the running times for our experiments.

  • MNIST/Fashion MNIST generation training run (TTC): 60-90 minutes.
  • MNIST/Fashion MNIST generation training run (WGAN): 45-90 minutes (this includes misalignments computations).
  • CIFAR10 generation training run: 3-4 hours (TTC), 90 minutes (WGAN-GP).
  • Image translation training run: up to 20 hours.
  • Image denoising training run: 8-10 hours.

Assets

Portions of this code, as well as the datasets used to produce our experimental results, make use of existing assets. We provide here a list of all assets used, along with the licenses under which they are distributed, if specified by the originator:

TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022