Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Overview

Minimal PyTorch implementation of Generative Latent Optimization

This is a reimplementation of the paper

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam:
Optimizing the Latent Space of Generative Networks

I'm not one of the authors. I just reimplemented parts of the paper in PyTorch for learning about PyTorch and generative models. Also, I liked the idea in the paper and was surprised that the approach actually works.

Implementation of the Laplacian pyramid L1 loss is inspired by https://github.com/mtyka/laploss. DCGAN network architecture follows https://github.com/pytorch/examples/tree/master/dcgan.

Running the code

First, install the required packages. For example, in Anaconda, you can simple do

conda install pytorch torchvision -c pytorch
conda install scikit-learn tqdm plac python-lmdb pillow

Download the LSUN dataset (only the bedroom training images are used here) into $LSUN_DIR. Then, simply run:

python glo.py $LSUN_DIR

You can learn more about the settings by running python glo.py --help.

Results

Unless mentioned otherwise, results are shown from a run over only a subset of the data (100000 samples - can be specified via the -n argument). Optimization was performed for only 25 epochs. The images below show reconstructions from the optimized latent space.

Results with 100-dimensional representation space look quite good, similar to the results shown in Fig. 1 in the paper.

python glo.py $LSUN_DIR -o d100 -gpu -d 100 -n 100000

Training for more epochs and from the whole dataset will make the images even sharper. Here are results (with 100D latent space) from a longer run of 50 epochs on the full dataset.

python glo.py $LSUN_DIR -o d100_full -gpu -d 100 -e 50

I'm not sure how many pyramid levels the authors used for the Laplacian pyramid L1 loss (here, we use 3 levels, but more might be better ... or not). But these results seem close enough.


Results with 512-dimensional representation space:

python glo.py $LSUN_DIR -o d512 -gpu -d 512 -n 100000

One of the main contributions of the paper is the use of the Laplacian pyramid L1 loss. Lets see how it compares to reconstructions using a simple L2 loss, again from 100-d representation space:

python glo.py $LSUN_DIR -o d100_l2 -gpu -d 512 -n 100000 -l l2


Comparison to L2 reconstruction loss, 512-d representation space:

python glo.py $LSUN_DIR -o d512_l2 -gpu -d 512 -n 100000 -l l2

I observed that initialization of the latent vectors with PCA is very crucial. Below are results from (normally distributed) random latent vectors. After 25 epochs, loss is only 0.31 (when initializing from PCA, loss after only 1 epoch is already 0.23). Reconstructions look really blurry.

python glo.py $LSUN_DIR -o d100_rand -gpu -d 100 -n 100000 -i random -e 500

It gets better after 500 epochs, but still very slow convergence and the results are not as clear as with PCA initialization.

Owner
Thomas Neumann
Thomas Neumann
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022