TrTr: Visual Tracking with Transformer

Related tags

Deep LearningTrTr
Overview

TrTr: Visual Tracking with Transformer

We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on several benchmarks and our method performs favorably against state-of-the-art algorithms.

Network architecture of TrTr for visual tracking

Installation

Install dependencies

$ ./install.sh ~/anaconda3 trtr 

note1: suppose you have the anaconda installation path under ~/anaconda3.

note2: please select a proper cuda-toolkit version to install Pytorch from conda, the default is 10.1. However, for RTX3090, please select 11.0. Then the above installation command would be $ ./install.sh ~/anaconda3 trtr 11.0.

Activate conda environment

$ conda activate trtr

Quick Start: Using TrTr

Webcam demo

Offline Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth --use_baseline_tracker

Online Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth

image sequences (png, jpeg)

add option --video_name ${video_dir}

video (mp4 or avi)

add option --video_name ${video_name}

Benchmarks

Download testing datasets

Please read this README.md to prepare the dataset.

Basic usage

Test tracker

$ cd benchmark
$ python test.py --cfg_file ../parameters/experiment/vot2018/offline.yaml
  • --cfg_file: the yaml file containing the hyper-parameter for each datasets. Please check ./benchmark/parameters/experiment for more yaml files
    • online model for VOT2018: python test.py --cfg_file ../parameters/experiment/vot2018/online.yaml
    • online model for OTB: python test.py --cfg_file ../parameters/experiment/otb/online.yaml
  • --result_path: optional parameter to specify a directory to store the tracking result. Default value is results, which generate ./benchmark/results/${dataset_name}
  • --model_name: optional parameter to specify the name of tracker name under the result path. Default value is trtr, which yield a tracker directory of ./benchmark/results/${dataset_name}/trtr
  • --vis: visualize tracking
  • --repetition: repeat number. For example, you should assign --repetition 15 for VOT benchmark following the official evaluation.

Eval tracker

$ cd benchmark
$ python eval.py
  • --dataset: parameter to specify the benchmark. Default value is VOT2018. Please assign other bench name, e.g., OTB, VOT2019, UAV, etc.
  • --tracker_path: parameter to specify the result directory. Default value is ./benchmark/results. This is a parameter related to --result_path parameter in python test.py.
  • --num: parameter to specify the thread number for evaluation multiple tracker results. Default is 1.

(Option) Hyper-parameter search

$ python hp_search.py --tracker.checkpoint ../networks/trtr_resnet50.pth --tracker.search_sizes 280 --separate --repetition 1  --use_baseline_tracker --tracker.model.transformer_mask True

Train

Download training datasets

Please read this README.md to prepare the training dataset.

Download VOT2018 dataset

  1. Please download VOT2018 dataset following [this REAMDE], which is necessary for testing the model during training.
  2. Or you skip this testing process by assigning several parameter, which are explained later.

Test with single GPU

$ python main.py  --cfg_file ./parameters/train/default.yaml --output_dir train

note1: please check ./parameters/train/default.yaml for the parameters for training note2: --output_dir to assign the path to store the training result. The above commmand genearte ./train note3: maybe you have to modify the file limit: ulimit -n 8192. Write in ~/.bashrc maybe better. note4: you can a larger value for --benchmark_start_epoch than for --epochs to skip benchmark test. e.g., --benchmark_start_epoch 21 and --epochs 20

debug mode for quick checking the training process:

$ python main.py  --cfg_file ./parameters/train/default.yaml  --batch_size 16 --dataset.paths ./datasets/yt_bb/dataset/Curation  ./datasets/vid/dataset/Curation/ --dataset.video_frame_ranges 3 100  --dataset.num_uses 100 100  --dataset.eval_num_uses 100 100  --resume networks/trtr_resnet50.pth --benchmark_start_epoch 0 --epochs 10

Multi GPUs

multi GPUs in single machine

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train

--nproc_per_node: is the number of GPU to use. The above command means use two GPUs in a machine.

multi GPUs in multi machines

Master Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train  --benchmark_start_epoch 8
  • --nnodes: number of machine to use. The above command means two machines.
  • --node_rank: the id for each machine. Master should be 0.
  • master_addr: assign the IP address of master machine
  • master_port: open port (e.g., 8080)

Slave1 Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml
Owner
趙 漠居(Zhao, Moju)
Project Lecture in the Uiversity of Tokyo.
趙 漠居(Zhao, Moju)
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022