TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Overview

Hierarchical Attention Networks for Document Classification

This is an implementation of the paper Hierarchical Attention Networks for Document Classification, NAACL 2016.

alt tag

Requirements

Data

We use the data provided by Tang et al. 2015, including 4 datasets:

  • IMDB
  • Yelp 2013
  • Yelp 2014
  • Yelp 2015

Note: The original data seems to have an issue with unzipping. I re-uploaded the data to GG Drive for better downloading speed. Please request for access permission.

Usage

First, download the datasets and unzip into data folder.
Then, run script to prepare the data (default is using Yelp-2015 dataset):

python data_prepare.py

Train and evaluate the model:
(make sure Glove embeddings are ready before training)

wget http://nlp.stanford.edu/data/glove.6B.zip
unzip glove.6B.zip
python train.py

Print training arguments:

python train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --cell_dim            CELL_DIM
                        Hidden dimensions of GRU cells (default: 50)
  --att_dim             ATTENTION_DIM
                        Dimensionality of attention spaces (default: 100)
  --emb_dim             EMBEDDING_DIM
                        Dimensionality of word embedding (default: 200)
  --learning_rate       LEARNING_RATE
                        Learning rate (default: 0.0005)
  --max_grad_norm       MAX_GRAD_NORM
                        Maximum value of the global norm of the gradients for clipping (default: 5.0)
  --dropout_rate        DROPOUT_RATE
                        Probability of dropping neurons (default: 0.5)
  --num_classes         NUM_CLASSES
                        Number of classes (default: 5)
  --num_checkpoints     NUM_CHECKPOINTS
                        Number of checkpoints to store (default: 1)
  --num_epochs          NUM_EPOCHS
                        Number of training epochs (default: 20)
  --batch_size          BATCH_SIZE
                        Batch size (default: 64)
  --display_step        DISPLAY_STEP
                        Number of steps to display log into TensorBoard (default: 20)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement

Results

With the Yelp-2015 dataset, after 5 epochs, we achieved:

  • 69.79% accuracy on the dev set
  • 69.62% accuracy on the test set

No systematic hyper-parameter tunning was performed. The result reported in the paper is 71.0% for the Yelp-2015.

alt tag

๐ŸŒˆ PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd ๐Ÿ“Š Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs ยป Report Bug ยท Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022