Async and Sync wrapper client around httpx, fastapi, date stuff

Overview

lazyapi

Async and Sync wrapper client around httpx, fastapi, and datetime stuff.


Motivation

This library is forked from an internal project that works with a lot of backend APIs, namely interacting with kubernetes's API. In certain cases, you want to use sync where async isnt suitable, but managing two seperate sync / async client can be annoying, especially when you aren't initializing from async at the start.

This project aims to solve a few problems:

  • Enables both sync and async REST calls from the same client.

  • Improves upon serialization/deserialization over standard json library by using simdjson.

  • Enables dynamic dataclass creation from responses via lazycls that are based on pydantic BaseModel.

  • Work with Timestamp / Datetime much quicker and simpler.

  • Manipulate response objects as efficiently as possible.

  • Wrapper functions for fastapi to enable quick api creation.


Quickstart

pip install --upgrade lazyapi
HttpResponse(resp= , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc)) class HttpResponse(BaseCls): resp: Response clientType: str = 'sync' method: str = 'get' timestamp: str = Field(default_factory=get_timestamp_utc) DefaultHeaders = { 'Accept': 'application/json', 'Content-Type': 'application/json' } --- Client Configs from Env Variables class HttpCfg: timeout = envToFloat('HTTPX_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_KEEPALIVE', 50) max_connect = envToInt('HTTPX_MAXCONNECT', 200) headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders) class AsyncHttpCfg: timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50) max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200) headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders) """ ">
from lazyapi import APIClient

# Allows initialization of the client from sync call. 
# The client has both async and sync call methods.
apiclient = APIClient(
    base_url = 'https://google.com',
    headers = {},
    module_name = 'customlib',
)

# All requests will be routed through the base_url
# Sync Method
resp = apiclient.get(path='/search?...', **kwargs)

# Async Method
resp = await apiclient.async_get(path='/search?...', **kwargs)

"""
Both yield the same results, only differing in the clientType = sync | async
The underlying classes are auto-generated from Pydantic BaseModels, so anything you can do with Pydantic Models, you can do with these.

> HttpResponse(resp=
    
     , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc))
    

class HttpResponse(BaseCls):
    resp: Response
    clientType: str = 'sync'
    method: str = 'get'
    timestamp: str = Field(default_factory=get_timestamp_utc)

DefaultHeaders = {
    'Accept': 'application/json',
    'Content-Type': 'application/json'
}

---
Client Configs from Env Variables

class HttpCfg:
    timeout = envToFloat('HTTPX_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_MAXCONNECT', 200)
    headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders)

class AsyncHttpCfg:
    timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200)
    headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders)

"""

API Specific Features

API Responses

Responses returned from APIClient are of lazyapi.classes.HttpResponse classes which wraps httpx.response in a BaseModel to do response validation, and interfacing with the response such as:

  • .is_error -> bool

  • .is_redirect -> bool

  • .data -> resp.json()

  • .data_obj -> SimdJson.Object / SimdJson.Array

  • .data_cls -> lazycls.LazyCls

  • .timestamp -> str with utc timestamp of request

Time/Datetime Functions

lazyapi.timez: Includes a multitude of datetime based functions to work with timestamp / time / duration.

  • TIMEZONE_DESIRED env to set the desired Timezone Default: America/Chicago

  • TIMEZONE_FORMAT env to set the desired Timezone parse. Default: %Y-%m-%dT%H:%M:%SZ

  • TimezCfg class can be modified based on above two variables.

  • get_timestamp: creates a str based timestamp using local TZ

  • get_timestamp_tz: creates a str based timestamp using the desired TZ

  • get_timestamp_utc: creates a str based timestamp using UTC

  • timer: Simple timer function

  • dtime: Get a datetime object. If no datetime obj is given, returns datetime.now(), otherwise will get the difference

  • get_dtime_secs: converts a datetime object to total num secs.

  • get_dtime_str: Converts a datetime object to a string. If no datetime obj is given, returns datetime.now() converted into desired str format

  • get_dtime_iso: attempts to standardize a datetime obj from existing tz into an iso/desired-formatted datetime

  • dtime_parse: attempts to parse a string, timestamp, etc. into a datetime obj

  • dtime_diff: gets the difference between two datetime objects.

FastAPI wrapper functions

Primarily used to create subapp mounts behind the primary fastapi app.

PlainTextResponse: return PlainTextResponse(content='ok') app.mount('/subapp', subapp) if __name__ == '__main__': import uvicorn uvicorn.run("main:app") """ Now you can expect the route at /subapp/healthz """ ">
from lazyapi import create_fastapi, FastAPICfg

"""
class FastAPICfg:
    app_title = envToStr('FASTAPI_TITLE', 'LazyAPI')
    app_desc = envToStr('FASTAPI_DESC', 'Just a LazyAPI Backend')
    app_version = envToStr('FASTAPI_VERSION', 'v0.0.1')
    include_middleware = envToBool('FASTAPI_MIDDLEWARE', 'true')
    allow_origins = envToList('FASTAPI_ALLOW_ORIGINS', default=["*"])
    allow_methods = envToList('FASTAPI_ALLOW_METHODS', default=["*"])
    allow_headers = envToList('FASTAPI_ALLOW_HEADERS', default=["*"])
    allow_credentials = envToBool('FASTAPI_ALLOW_CREDENTIALS', 'true')

"""
app = create_fastapiapp_name: str, title: str = None, desc: str = None, version: str = None)
subapp = create_fastapi(app_name: 'subapp')

@subapp.get('/healthz')
async def healthcheck() -> PlainTextResponse:
    return PlainTextResponse(content='ok')


app.mount('/subapp', subapp)

if __name__ == '__main__':
    import uvicorn
    uvicorn.run("main:app")

"""
Now you can expect the route at
/subapp/healthz


"""
You might also like...
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

 Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

REST API with FastAPI and SQLite3.
REST API with FastAPI and SQLite3.

REST API with FastAPI and SQLite3

Example of using FastAPI and MongoDB database.

FastAPI Todo Application Example of using FastAPI and MangoDB database. 💡 Prerequisites Python ⚙️ Build & Run The first thing to do is to clone the r

Basic FastAPI starter with GraphQL, Docker, and MongoDB configurations.

FastAPI + GraphQL Starter A python starter project using FastAPI and GraphQL. This project leverages docker for containerization and provides the scri

FastAPI Learning Example,对应中文视频学习教程:https://space.bilibili.com/396891097

视频教学地址 中文学习教程 1、本教程每一个案例都可以独立跑,前提是安装好依赖包。 2、本教程并未按照官方教程顺序,而是按照实际使用顺序编排。 Video Teaching Address FastAPI Learning Example 1.Each case in this tutorial c

🤪 FastAPI + Vue构建的Mall项目后台管理

Mall项目后台管理 前段时间学习Vue写了一个移动端项目 https://www.charmcode.cn/app/mall/home 然后教程到此就结束了, 我就总感觉少点什么,计划自己着手写一套后台管理。 相关项目 移动端Mall项目源码(Vue构建): https://github.com/

FastAPI on Google Cloud Run

cloudrun-fastapi Boilerplate for running FastAPI on Google Cloud Run with Google Cloud Build for deployment. For all documentation visit the docs fold

FastAPI + Django experiment

django-fastapi-example This is an experiment to demonstrate one potential way of running FastAPI with Django. It won't be actively maintained. If you'

Releases(v0.0.2)
Owner
Chief Architect @ Growth Engine
python fastapi example connection to mysql

Quickstart Then run the following commands to bootstrap your environment with poetry: git clone https://github.com/xiaozl/fastapi-realworld-example-ap

55 Dec 15, 2022
🤪 FastAPI + Vue构建的Mall项目后台管理

Mall项目后台管理 前段时间学习Vue写了一个移动端项目 https://www.charmcode.cn/app/mall/home 然后教程到此就结束了, 我就总感觉少点什么,计划自己着手写一套后台管理。 相关项目 移动端Mall项目源码(Vue构建): https://github.com/

王小右 131 Jan 01, 2023
Code for my JWT auth for FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 8 Dec 16, 2022
A simple api written in python/fastapi that serves movies from a cassandra table.

A simple api written in python/fastapi that serves movies from a cassandra table. 1)clone the repo 2)rename sample_global_config_.py to global_config.

Sreeraj 1 Aug 26, 2021
基于Pytorch的脚手架项目,Celery+FastAPI+Gunicorn+Nginx+Supervisor实现服务部署,支持Docker发布

cookiecutter-pytorch-fastapi 基于Pytorch的 脚手架项目 按规范添加推理函数即可实现Celery+FastAPI+Gunicorn+Nginx+Supervisor+Docker的快速部署 Requirements Python = 3.6 with pip in

17 Dec 23, 2022
Online Repo Browser

MSYS2 Web Interface A simple web interface for browsing the MSYS2 repos. Rebuild CSS/JS (optional): cd frontend npm install npm run build Run for Dev

MSYS2 64 Dec 30, 2022
volunteer-database

This is the official CSM (Crowd source medical) database The What Now? We created this in light of the COVID-19 pandemic to allow volunteers to work t

32 Jun 21, 2022
更新 2.0 版本,使用 Python WEB 高性能异步框架 FastAPI 制作的抖音无水印解析下载,采用前后端分离思想!

前言 这个是 2.0 版本,使用现在流行的前后端分离思想重构。 体验网址:https://douyin.bigdataboy.cn 更新日志 2020.05.30:使用 FastAPI 前后端分离重构 2020.05.02:已更新,正常使用 2020.04.27:抖音结构更新,已修复视频有水印。(失

64 Nov 25, 2022
FastAPI Admin Dashboard based on FastAPI and Tortoise ORM.

FastAPI ADMIN 中文文档 Introduction FastAPI-Admin is a admin dashboard based on fastapi and tortoise-orm. FastAPI-Admin provide crud feature out-of-the-bo

long2ice 1.6k Dec 31, 2022
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

Ahmed BESBES 60 Dec 17, 2022
Web Inventory tool, takes screenshots of webpages using Pyppeteer (headless Chrome/Chromium) and provides some extra bells & whistles to make life easier.

WitnessMe WitnessMe is primarily a Web Inventory tool inspired by Eyewitness, its also written to be extensible allowing you to create custom function

byt3bl33d3r 648 Jan 05, 2023
python template private service

Template for private python service This is a cookiecutter template for an internal REST API service, written in Python, inspired by layout-golang. Th

UrvanovCompany 15 Oct 02, 2022
signal-cli-rest-api is a wrapper around signal-cli and allows you to interact with it through http requests

signal-cli-rest-api signal-cli-rest-api is a wrapper around signal-cli and allows you to interact with it through http requests. Features register/ver

Sebastian Noel Lübke 31 Dec 09, 2022
官方文档已经有翻译的人在做了,

FastAPI 框架,高性能,易学,快速编码,随时可供生产 文档:https://fastapi.tiangolo.com 源码:https://github.com/tiangolo/fastapi FastAPI 是一个现代、快速(高性能)的 Web 框架,基于标准 Python 类型提示,使用

ApacheCN 27 Nov 11, 2022
Backend, modern REST API for obtaining match and odds data crawled from multiple sites. Using FastAPI, MongoDB as database, Motor as async MongoDB client, Scrapy as crawler and Docker.

Introduction Apiestas is a project composed of a backend powered by the awesome framework FastAPI and a crawler powered by Scrapy. This project has fo

Fran Lozano 54 Dec 13, 2022
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables

Piccolo Admin Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables - allowing you to easily add / edit / filter your

188 Jan 09, 2023
An image validator using FastAPI.

fast_api_image_validator An image validator using FastAPI.

Kevin Zehnder 7 Jan 06, 2022
MLServer

MLServer An open source inference server to serve your machine learning models. ⚠️ This is a Work in Progress. Overview MLServer aims to provide an ea

Seldon 341 Jan 03, 2023
All of the ad-hoc things you're doing to manage incidents today, done for you, and much more!

About What's Dispatch? Put simply, Dispatch is: All of the ad-hoc things you’re doing to manage incidents today, done for you, and a bunch of other th

Netflix, Inc. 3.7k Jan 05, 2023