Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

Overview

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe De Vleeschouwer ( https://github.com/trougnouf/Manypriors )

Forked from PyTorch implementation of "Variational image compression with a scale hyperprior" by Jiaheng Liu ( https://github.com/liujiaheng/compression )

This code is experimental.

Requirements

TODO torchac should be switched to the standalone release on https://github.com/fab-jul/torchac (which was not yet released at the time of writing this code)

Arch

pacaur -S python-tqdm python-pytorch-torchac python-configargparse python-yaml python-ptflops python-colorspacious python-pypng python-pytorch-piqa-git

Ubuntu / Slurm cluster / misc:

TMPDIR=tmp pip3 install --user torch==1.7.0+cu92 torchvision==0.8.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html
TMPDIR=tmp pip3 install --user tqdm matplotlib tensorboardX scipy scikit-image scikit-video ConfigArgParse pyyaml h5py ptflops colorspacious pypng piqa

torchac must be compiled and installed per https://github.com/trougnouf/L3C-PyTorch/tree/master/src/torchac

torchac $ COMPILE_CUDA=auto python3 setup.py build
torchac $ python3 setup.py install --optimize=1 --skip-build

or (untested)

torchac $ pip install .

Once Ubuntu updates PyTorch then tensorboardX won't be required

Dataset gathering

Copy the kodak dataset into datasets/test/kodak

cd ../common
python tools/wikidownloader.py --category "Category:Featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Formerly featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Photographs taken on Ektachrome and Elite Chrome film"
mv "../../datasets/Category:Featured pictures on Wikimedia Commons" ../../datasets/FeaturedPictures
mv "../../datasets/Category:Formerly featured pictures on Wikimedia Commons" ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons
mv "../../datasets/Category:Photographs taken on Ektachrome and Elite Chrome film" ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film
python tools/verify_images.py ../../datasets/FeaturedPictures/
python tools/verify_images.py ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons/
python tools/verify_images.py ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/

# TODO make a list of train/test img automatically s.t. images don't have to be copied over the network

Crop images to 1024*1024. from src/common: (in python)

import os
from libs import libdsops
for ads in ['Formerly_featured_pictures_on_Wikimedia_Commons', 'Photographs_taken_on_Ektachrome_and_Elite_Chrome_film', 'FeaturedPictures']:
    libdsops.split_traintest(ads)
    libdsops.crop_ds_dpath(ads, 1024, root_ds_dpath=os.path.join(libdsops.ROOT_DS_DPATH, 'train'), num_threads=os.cpu_count()//2)

#verify crops
python3 tools/verify_images.py ../../datasets/train/resized/1024/FeaturedPictures/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Formerly_featured_pictures_on_Wikimedia_Commons/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/
# use the --save_img flag at the end of verify_images.py commands if training fails after the simple verification

Move a small subset of the training cropped images to a matching test directory and use it as args.val_dpath

JPEG/BPG compression of the Commons Test Images is done with common/tools/bpg_jpeg_compress_commons.py and comp/tools/bpg_jpeg_test_commons.py

Loading

Loading a model: provide all necessary (non-default) parameters s.a. arch, num_distributions, etc. Saved yaml can be used iff the ConfigArgParse patch from https://github.com/trougnouf/ConfigArgParse is applied, otherwise unset values are overwritten with the "None" string.

Training

Train a base model (given arch and num_distributions) for 6M steps at train_lambda=4096, fine-tune for 4M steps with lower train_lambda and/or msssim lossf Set arch to Manypriors for this work, use num_distributions 1 for Balle2017, or set arch to Balle2018PTTFExp for Balle2018 (hyperprior) egrun:

python train.py --num_distributions 64 --arch ManyPriors --train_lambda 4096 --expname mse_4096_manypriors_64_CLI
# and/or
python train.py --config configs/mse_4096_manypriors_64pr.yaml
# and/or
python train.py --config configs/mse_2048_manypriors_64pr.yaml --pretrain mse_4096_manypriors_64pr --reset_lr --reset_global_step # --reset_optimizer
# and/or
python train.py --config configs/mse_4096_hyperprior.yaml

--passthrough_ae is now activated by default. It was not used in the paper, but should result in better rate-distortion. To turn it off, change config/defaults.yaml or use --no_passthrough_ae

Tests

egruns: Test complexity:

python tests.py --complexity --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test timing:

python tests.py --timing "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Segment the images in commons_test_dpath by distribution index:

python tests.py --segmentation --commons_test_dpath "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Visualize cumulative distribution functions:

python tests.py --plot --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on kodak images:

python tests.py --encdec_kodak --test_dpath "../../datasets/test/kodak/" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on commons images (larger, uses CPU):

python tests.py --encdec_commons --test_commons_dpath "../../datasets/test/Commons_Test_Photographs/" --pretrain checkpoints/mse_4096_manypriors_64pr/saved_models/checkpoint.pth --arch ManyPriors --num_distributions 64

Encode an image:

python tests.py --encode "../../datasets/test/Commons_Test_Photographs/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1

Decode that image:

python tests.py --decode "checkpoints/mse_4096_manypriors_64pr/encoded/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1
Owner
Benoit Brummer
BS CpE at @UCF (2016), MS CS (AI) @uclouvain (2019), PhD student @uclouvain w/ intoPIX
Benoit Brummer
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023