Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Overview

Code Artifacts

Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Demos

Testbed

Real-world Environment

Virtual Environment (Unity)

Sim2Real and Real2Sim translations by CycleGAN

Self-driving cars

The same DNN model deployed on a real-world electric vehicle and in a virtual simulated world

Visual Odometry

Real-time XTE predictions in the real-world with visual odometry

Corruptions (left) and Adversarial Examples (right)

Requisites

Python3, git 64 bit, miniconda 3.7 64 bit. To modify the simulator (optional): Unity 2019.3.0f1

Software setup: We adopted the PyCharm Professional 2020.3, a Python IDE by JetBrains, and Python 3.7.

Hardware setup: Training the DNN models (self-driving cars) and CycleGAN on our datasets is computationally expensive. Therefore, we recommend using a machine with a GPU. In our setting, we ran our experiments on a machine equipped with a AMD Ryzen 5 processor, 8 GB of memory, and an NVIDIA GPU GeForce RTX 2060 with 6 GB of dedicated memory. Our trained models are available here.

Donkey Car

We used Donkey Car v. 3.1.5. Make sure you correctly install the donkey car software, the necessary simulator software and our simulator (macOS only).

* git clone https://github.com/autorope/donkeycar.git
* git checkout a91f88d
* conda env remove -n donkey
* conda env create -f install/envs/mac.yml
* conda activate donkey
* pip install -e .\[pc\]

XTE Predictor for real-world driving images

Data collection for a XTE predictor must be collected manually (or our datasets can be used). Alternatively, data can be collected by:

  1. Launching the Simulator.
  2. Selecting a log directory by clicking the 'log dir' button
  3. Selecting a preferred resolution (default is 320x240)
  4. Launching the Sanddbox Track scene and drive the car with the 'Joystick/Keyboard w Rec' button
  5. Driving the car

This will generate a dataset of simulated images and respective XTEs (labels). The simulated images have then to be converted using a CycleGAN network trained to do sim2real translation.

Once the dataset of converted images and XTEs is collected, use the train_xte_predictor.py notebook to train the xte predictor.

Self-Driving Cars

Manual driving

Connection

Donkey Car needs a static IP so that we can connect onto the car

ssh jetsonnano@
   
    
Pwd: 
    

    
   

Joystick Pairing

ds4drv &

PS4 controller: press PS + share and hold; starts blinking and pairing If [error][bluetooth] Unable to connect to detected device: Failed to set operational mode: [Errno 104] Connection reset by peer Try again When LED is green, connection is ok

python manage.py drive —js  // does not open web UI
python manage.py drive  // does open web UI for settiong a maximum throttle value

X -> E-Stop (negative acceleration) Share -> change the mode [user, local, local_angle]

Enjoy!

press PS and hold for 10 s to turn it off

Training

python train.py --model 
   
    .h5 --tub 
     --type 
     
       --aug

     
   

Testing (nominal conditions)

For autonomus driving:

python manage.py drive --model [models/
   
    ]

   

Go to: http://10.21.13.35:8887/drive Select “Local Pilot (d)”

Testing (corrupted conditions)

python manage.py drive --model [models/
   
    ] [--corruption=
    
     ] [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   

Testing (adversarial conditions)

python manage.py drive --model [models/
   
    ] [--useadversarial] [--advimage=
    
     ]  [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   
Owner
Andrea Stocco
PostDoctoral researcher in Software Engineering. My interests concern devising techniques for testing web- and AI-based software systems.
Andrea Stocco
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022