End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

Overview

PDVC

PWC PWC

Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

[paper] [valse论文速递(Chinese)]

This repo supports:

  • two video captioning tasks: dense video captioning and video paragraph captioning
  • two datasets: ActivityNet Captions and YouCook2
  • video features containing C3D, TSN, and TSP.
  • visualization of the generated captions of your own videos

Table of Contents:

Updates

  • (2021.11.19) add code for running PDVC on raw videos and visualize the generated captions (support Chinese and other non-English languages)
  • (2021.11.19) add pretrained models with TSP features. It achieves 9.03 METEOR(2021) and 6.05 SODA_c, a very competitive results on ActivityNet Captions without self-critical sequence training.
  • (2021.08.29) add TSN pretrained models and support YouCook2

Introduction

PDVC is a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art methods when its localization accuracy is on par with them. pdvc.jpg

Preparation

Environment: Linux, GCC>=5.4, CUDA >= 9.2, Python>=3.7, PyTorch>=1.5.1

  1. Clone the repo
git clone --recursive https://github.com/ttengwang/PDVC.git
  1. Create vitual environment by conda
conda create -n PDVC python=3.7
source activate PDVC
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
conda install ffmpeg
pip install -r requirement.txt
  1. Compile the deformable attention layer (requires GCC >= 5.4).
cd pdvc/ops
sh make.sh

Running PDVC on Your Own Videos

Download a pretrained model (GoogleDrive) with TSP features and put it into ./save. Then run:

video_folder=visualization/videos
output_folder=visualization/output
pdvc_model_path=save/anet_tsp_pdvc/model-best.pth
output_language=en
bash test_and_visualize.sh $video_folder $output_folder $pdvc_model_path $output_language

check the $output_folder, you will see a new video with embedded captions. Note that we generate non-English captions by translating the English captions by GoogleTranslate. To produce chinese captions, set output_language=zh-cn. For other language support, find the abbreviation of your language at this url, and you also may need to download a font supporting your language and put it into ./visualization.

demo.gifdemo.gif

Training and Validation

Download Video Features

cd data/anet/features
bash download_anet_c3d.sh
# bash download_anet_tsn.sh
# bash download_i3d_vggish_features.sh
# bash download_tsp_features.sh

Dense Video Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}
# The script will evaluate the model for every epoch. The results and logs are saved in `./save`.

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Video Paragraph Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID} 

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc_gt.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Performance

Dense video captioning

Model Features config_path Url Recall Precision BLEU4 METEOR2018 METEOR2021 CIDEr SODA_c
PDVC_light C3D cfgs/anet_c3d_pdvcl.yml Google Drive 55.30 58.42 1.55 7.13 7.66 24.80 5.23
PDVC C3D cfgs/anet_c3d_pdvc.yml Google Drive 55.20 57.36 1.82 7.48 8.09 28.16 5.47
PDVC_light TSN cfgs/anet_tsn_pdvcl.yml Google Drive 55.34 57.97 1.66 7.41 7.97 27.23 5.51
PDVC TSN cfgs/anet_tsn_pdvc.yml Google Drive 56.21 57.46 1.92 8.00 8.63 29.00 5.68
PDVC_light TSP cfgs/anet_tsp_pdvcl.yml Google Drive 55.24 57.78 1.77 7.94 8.55 28.25 5.95
PDVC TSP cfgs/anet_tsp_pdvc.yml Google Drive 55.79 57.39 2.17 8.37 9.03 31.14 6.05

Notes:

Video paragraph captioning

Model Features config_path BLEU4 METEOR CIDEr
PDVC C3D cfgs/anet_c3d_pdvc.yml 9.67 14.74 16.43
PDVC TSN cfgs/anet_tsn_pdvc.yml 10.18 15.96 20.66
PDVC TSP cfgs/anet_tsp_pdvc.yml 10.46 16.42 20.91

Notes:

  • Paragraph-level scores are evaluated on the ActivityNet Entity ae-val set.

Citation

If you find this repo helpful, please consider citing:

@inproceedings{wang2021end,
  title={End-to-End Dense Video Captioning with Parallel Decoding},
  author={Wang, Teng and Zhang, Ruimao and Lu, Zhichao and Zheng, Feng and Cheng, Ran and Luo, Ping},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6847--6857},
  year={2021}
}
@ARTICLE{wang2021echr,
  author={Wang, Teng and Zheng, Huicheng and Yu, Mingjing and Tian, Qian and Hu, Haifeng},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Event-Centric Hierarchical Representation for Dense Video Captioning}, 
  year={2021},
  volume={31},
  number={5},
  pages={1890-1900},
  doi={10.1109/TCSVT.2020.3014606}}

Acknowledgement

The implementation of Deformable Transformer is mainly based on Deformable DETR. The implementation of the captioning head is based on ImageCaptioning.pytorch. We thanks the authors for their efforts.

Owner
Teng Wang
My research interests focus on deep learning and computer vision.
Teng Wang
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022