A Closer Look at Reference Learning for Fourier Phase Retrieval

Overview

A Closer Look at Reference Learning for Fourier Phase Retrieval

This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inverse Problems paper.

Contents

|-- references
|   |-- gs
|   |   |-- non-oversampled
|   |   |   |-- u_cifar_gs.npy
|   |   |   |-- u_emnist_gs.npy
|   |   |   |-- u_fmnist_gs.npy
|   |   |   |-- u_mnist_gs.npy
|   |   |   `-- u_svhn_gs.npy
|   |   `-- oversampled
|   |       |-- u_cifar.npy
|   |       |-- u_emnist.npy
|   |       |-- u_fmnist.npy
|   |       |-- u_mnist.npy
|   |       `-- u_svhn.npy
|   |-- hyder
|   |   |-- non-oversampled
|   |   |   |-- u_cifar.npy
|   |   |   |-- u_emnist.npy
|   |   |   |-- u_fmnist.npy
|   |   |   |-- u_mnist.npy
|   |   |   `-- u_svhn.npy
|   |   `-- oversampled
|   |       |-- u_celeba.npy
|   |       |-- u_cifar.npy
|   |       |-- u_emnist.npy
|   |       |-- u_fmnist.npy
|   |       |-- u_mnist.npy
|   |       `-- u_svhn.npy
|   `-- random
|       |-- u_ours_noiseless.npy
|       |-- u_ours.npy
|       |-- u_random_binary.npy
|       `-- u_random.npy
|-- data.py
|-- phase-retrieval-with-reference.ipynb
|-- README.md
|-- unrolled-GS.ipynb
`-- util.py
    

Requirements

All experiments were conducted with the following package versions:

  • numpy==1.19.5
  • torch==1.9.0
  • torchvision==0.10.0
  • matplotlib==3.4.3
  • scikit-image==0.17.2

The reference images for the oversampled case dicussed in Hyder et al. [1] were obtained from the official repository.

References

[1] Rakib Hyder, Zikui Cai, and M Salman Asif. Solving phase retrieval with a learned reference. In European Conference on Computer Vision, pages 425–441. Springer, 2020.

Owner
Tobias Uelwer
PhD student interested in machine learning, deep learning and image processing
Tobias Uelwer
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022