Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Overview

Knowledge Informed Machine Learning using a Weibull-based Loss Function

Exploring the concept of knowledge-informed machine learning with the use of a Weibull-based loss function. Used to predict remaining useful life (RUL) on the IMS and PRONOSTIA (also called FEMTO) bearing data sets.

Open In Colab Source code arXiv

Knowledge-informed machine learning is used on the IMS and PRONOSTIA bearing data sets for remaining useful life (RUL) prediction. The knowledge is integrated into a neural network through a novel Weibull-based loss function. A thorough statistical analysis of the Weibull-based loss function is conducted, demonstrating the effectiveness of the method on the PRONOSTIA data set. However, the Weibull-based loss function is less effective on the IMS data set.

The experiment will be detailed in the Journal of Prognostics and Health Management (accepted and pending publication -- preprint here), with an extensive discussion on the results, shortcomings, and benefits analysis. The paper also gives an overview of knowledge informed machine learning as it applies to prognostics and health management (PHM).

You can replicate the work, and all figures, by following the instructions in the Setup section. Even easier: run the Colab notebook!

If you have any questions, leave a comment in the discussion, or email me ([email protected]).

Summary

In this work, we use the definition of knowledge informed machine learning from von Rueden et al. (their excellent paper is here). Here's the general taxonomy of our knowledge informed machine learning experiment:

source_rep_int

Bearing vibration data (from the frequency domain) was used as input to feed-forward neural networks. The below figure demonstrates the data as a spectrogram (a) and the spectrogram after "binning" (b). The binned data was used as input.

spectrogram

A large hyper-parameter search was conducted on neural networks. Nine different Weibull-based loss functions were tested on each unique network.

The below chart is a qualitative method of showing the effectiveness of the Weibull-based loss functions on the two data sets.

loss function percentage

We also conducted a statistical analysis of the results, as shown below.

correlation of the weibull-based loss function to results

The top performing models' RUL trends are shown below, for both the IMS and PRONOSTIA data sets.

IMS RUL  trend
PRONOSTIA RUL  trend

Setup

Tested in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce results:

  1. Clone this repo - clone https://github.com/tvhahn/weibull-knowledge-informed-ml.git

  2. Create virtual environment. Assumes that Conda is installed.

    • Linux/MacOS: use command from the Makefile in the root directory - make create_environment
    • Windows: from root directory - conda env create -f envweibull.yml
    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.
  3. Download raw data.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.
    • Windows: Manually download the the IMS and PRONOSTIA (FEMTO) data sets from NASA prognostics data repository. Put in data/raw folder.
    • HPC: use make download. Will automatically detect HPC environment.
  4. Extract raw data.

    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
    • Windows: Manually extract data. See the Project Organization section for folder structure.
    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
  5. Ensure virtual environment is activated. conda activate weibull or source ~/weibull/bin/activate

  6. From root directory of weibull-knowledge-informed-ml, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Train!

    • Linux/MacOS: use make train_ims or make train_femto. Note: set constants in the makefile for changing random search parameters. Currently set as default.

    • Windows: run manually by calling the script - python train_ims or python train_femto with the appropriate arguments. For example: src/models/train_models.py --data_set femto --path_data your_data_path --proj_dir your_project_directory_path

    • HPC: use make train_ims or make train_femto. The HPC environment should be automatically detected. A SLURM script will be run for a batch job.

      • Modify the train_modify_ims_hpc.sh or train_model_femto_hpc.sh in the src/models directory to meet the needs of your HPC cluster. This should work on Compute Canada out of the box.
  8. Filter out the poorly performing models and collate the results. This will create several results files in the models/final folder.

    • Linux/MacOS: use make summarize_ims_models or make summarize_femto_models. (note: set filter boundaries in summarize_model_results.py. Will eventually modify for use with Argparse...)
    • Windows: run manually by calling the script.
    • HPC: use make summarize_ims_models or make summarize_femto_models. Again, change filter requirements in the summarize_model_results.py script.
  9. Make the figures of the data and results.

    • Linux/MacOS: use make figures_data and make figures_results. Figures will be generated and placed in the reports/figures folder.
    • Windows: run manually by calling the script.
    • HPC: use make figures_data and make figures_results

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands to reproduce work, lik `make data` or `make train_ims`
├── README.md          <- The top-level README.
├── data
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump. Downloaded from the NASA Prognostic repository.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details (nothing in here yet)
│
├── models             <- Trained models, model predictions, and model summaries
│   ├── interim        <- Intermediate models that have not analyzed. Output from the random search.
│   ├── final          <- Final models that have been filtered and summarized. Several outpu csv files as well.
│
├── notebooks          <- Jupyter notebooks used for data exploration and analysis. Of varying quality.
│   ├── scratch        <- Scratch notebooks for quick experimentation.     
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials (empty).
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── envweibull.yml    <- The Conda environment file for reproducing the analysis environment
│                        recommend using Conda).
│
├── make_hpc_venv.sh  <- Bash script to create the HPC venv. Setup for my Compute Canada cluster.
│                        Modify to suit your own HPC cluster.
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models               
│   │   └── predict_model.py
│   │
│   └── visualization  <- Scripts to create figures of the data, results, and training progress
│       ├── visualize_data.py       
│       ├── visualize_results.py     
│       └── visualize_training.py    

Future List

As noted in the paper, the best thing would be to test out Weibull-based loss functions on large, and real-world, industrial datasets. Suitable applications may include large fleets of pumps or gas turbines.

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022