A GitHub action that suggests type annotations for Python using machine learning.

Overview

Typilus: Suggest Python Type Annotations

A GitHub action that suggests type annotations for Python using machine learning.

This action makes suggestions within each pull request as suggested edits. You can then directly apply these suggestions to your code or ignore them.

Sample Suggestion Sample Suggestion

What are Python type annotations? Introduced in Python 3.5, type hints (more traditionally called type annotations) allow users to annotate their code with the expected types. These annotations are optionally checked by external tools, such as mypy and pyright, to prevent type errors; they also facilitate code comprehension and navigation. The typing module provides the core types.

Why use machine learning? Given the dynamic nature of Python, type inference is challenging, especially over partial contexts. To tackle this challenge, we use a graph neural network model that predicts types by probabilistically reasoning over a program’s structure, names, and patterns. This allows us to make suggestions with only a partial context, at the cost of suggesting some false positives.

Install Action in your Repository

To use the GitHub action, create a workflow file. For example,

name: Typilus Type Annotation Suggestions

# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on:
  pull_request:
    branches: [ master ]

jobs:
  suggest:
    # The type of runner that the job will run on
    runs-on: ubuntu-latest

    steps:
    # Checks-out your repository under $GITHUB_WORKSPACE, so that typilus can access it.
    - uses: actions/[email protected]
    - uses: typilus/[email protected]
      env:
        GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
        MODEL_PATH: path/to/model.pkl.gz   # Optional: provide the path of a custom model instead of the pre-trained model.
        SUGGESTION_CONFIDENCE_THRESHOLD: 0.8   # Configure this to limit the confidence of suggestions on un-annotated locations. A float in [0, 1]. Default 0.8
        DISAGREEMENT_CONFIDENCE_THRESHOLD: 0.95  # Configure this to limit the confidence of suggestions on annotated locations.  A float in [0, 1]. Default 0.95

The action uses the GITHUB_TOKEN to retrieve the diff of the pull request and to post comments on the analyzed pull request.

Technical Details & Internals

This GitHub action is a reimplementation of the Graph2Class model of Allamanis et al. PLDI 2020 using the ptgnn library. Internally, it uses a Graph Neural Network to predict likely type annotations for Python code.

This action uses a pre-trained neural network that has been trained on a corpus of open-source repositories that use Python's type annotations. At this point we do not support online adaptation of the model to each project.

Training your own model

You may wish to train your own model and use it in this action. To do so, please follow the steps in ptgnn. Then provide a path to the model in your GitHub action configuration, through the MODEL_PATH environment variable.

Contributing

We welcome external contributions and ideas. Please look at the issues in the repository for ideas and improvements.

You might also like...
 30 Days Of Machine Learning Using Pytorch
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

A machine learning web application for binary classification using streamlit
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Comments
  • IndexError: list index out of range

    IndexError: list index out of range

    Diff GET Status Code:  200
    Traceback (most recent call last):
      File "/usr/src/entrypoint.py", line 81, in <module>
        changed_files = get_changed_files(diff_rq.text)
      File "/usr/src/changeutils.py", line 38, in get_changed_files
        assert file_diff_lines[3].startswith("---")
    IndexError: list index out of range
    

    logs_302.zip

    opened by ZdenekM 1
  • Several small fixes

    Several small fixes

    Here are couple of things I noticed trying Typilus inference using GH Action:

    • gracefully handle patches that include a file renames (\wo any content modifications) by skipping such files
    • extractor stats reporting only processed files
    opened by bzz 0
  • Create a ptgnn-based Typilus model

    Create a ptgnn-based Typilus model

    Create and use the full Typilus model instead of graph2class.

    • [ ] Implement it in ptgnn
    • [ ] Use action cache to store intermediate result
    • [ ] Auto-update type space "once in a while"
    enhancement 
    opened by mallamanis 0
Releases(v0.9)
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022