The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

Related tags

Deep Learningeqlv2
Overview

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation

This repo is official implementation CVPR 2021 paper: Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection and CVPR 2020 paper: Equalization loss for long-tailed object recognition

Besides the equalization losses, this repo also includes some other algorithms:

  • BAGS (Balance GroupSoftmax)
  • cRT (classifier re-training)
  • LWS (Learnable Weight Scaling)

Requirements

We test our codes on MMDetection V2.3, other versions should also be ok.

Prepare LVIS Dataset

for images

LVIS uses same images as COCO's, so you need to donwload COCO dataset at folder ($COCO), and link those train, val under folder lvis($LVIS).

mkdir -p data/lvis
ln -s $COCO/train $LVIS
ln -s $COCO/val $LVIS
ln -s $COCO/test $LVIS

for annotations

Download the annotations from lvis webset

cd $LVIS
mkdir annotations

then places the annotations at folder ($LVIS/annotations)

Finally you will have the file structure like below:

data
  ├── lvis
  |   ├── annotations
  │   │   │   ├── lvis_v1_val.json
  │   │   │   ├── lvis_v1_train.json
  │   ├── train2017
  │   │   ├── 000000004134.png
  │   │   ├── 000000031817.png
  │   │   ├── ......
  │   ├── val2017
  │   ├── test2017

for API

The official lvis-api and mmlvis can lead to some bugs of multiprocess. See issue

So you can install this LVIS API from my modified repo.

pip install git+https://github.com/tztztztztz/lvis-api.git

Testing with pretrain_models

# ./tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
./tools/dist_test.sh configs/eqlv2/eql_r50_8x2_1x.py data/pretrain_models/eql_r50_8x2_1x.pth 8 --out results.pkl --eval bbox segm

Training

# ./tools/dist_train.sh ${CONFIG} ${GPU_NUM}
./tools/dist_train.sh ./configs/end2end/eql_r50_8x2_1x.py 8 

Once you finished the training, you will get the evaluation metric like this:

bbox AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.242
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.401
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.254
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.181
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.317
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.367
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.135
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.223
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.497
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.197
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.415

mask AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.237
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.372
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.251
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.169
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.370
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.149
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.286
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.389

We place ours configs file in ./configs/

  • ./configs/end2end: eqlv2 and other end2end methods
  • ./configs/decouple decoupled-based methods

How to train decouple training methods.

  1. Train the baseline model (or EQL v2).
  2. Prepare the pretrained checkpoint
  # suppose you've trained baseline model
  cd r50_1x
  python ../tools/ckpt_surgery.py --ckpt-path epoch_12.pth --method remove
  # if you want to train LWS, you should choose method 'reset'
  1. Start training with configs
  # ./tools/dist_train.sh ./configs/decouple/bags_r50_8x2_1x.py 8
  # ./tools/dist_train.sh ./configs/decouple/lws_r50_8x2_1x.py 8
  ./tools/dist_train.sh ./configs/decouple/crt_r50_8x2_1x.py 8

Pretrained Models on LVIS

Methods end2end AP APr APc APf pretrained_model
Baseline 16.1 0.0 12.0 27.4 model
EQL 18.6 2.1 17.4 27.2 model
RFS 22.2 11.5 21.2 28.0 model
LWS × 17.0 2.0 13.5 27.4 model
cRT × 22.1 11.9 20.2 29.0 model
BAGS × 23.1 13.1 22.5 28.2 model
EQLv2 23.7 14.9 22.8 28.6 model

How to train EQLv2 on OpenImages

1. Download the data

Download openimages v5 images from link, The folder will be

openimages
    ├── train
    ├── validation
    ├── test

Download the annotations for Challenge 2019 from link, The folder will be

annotations
    ├── challenge-2019-classes-description-500.csv
    ├── challenge-2019-train-detection-human-imagelabels.csv
    ├── challenge-2019-train-detection-bbox.csv
    ├── challenge-2019-validation-detection-bbox.csv
    ├── challenge-2019-validation-detection-human-imagelabels.csv
    ├── ...

2. Convert the .csv to coco-like .json file.

cd tools/openimages2coco/
python convert_annotations.py -p PATH_TO_OPENIMAGES --version challenge_2019 --task bbox 

You may need to donwload the data directory from https://github.com/bethgelab/openimages2coco/tree/master/data and place it at $project_dir/tools/openimages2coco/

3. Train models

  ./tools/dist_train.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py 8

Other configs can be found at ./configs/openimages/

4. Inference and output the json results file

./tools/dist_test.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py openimage_eqlv2_2x/epoch_1.pth 8 --format-only --options "jsonfile_prefix=openimage_eqlv2_2x/results"" 

Then you will get results.bbox.json under folder openimage_eqlv2

5. Convert coco-like json result file to openimage-like csv results file

cd $project_dir/tools/openimages2coco/
python convert_predictions.py -p ../../openimage_eqlv2/results.bbox.json --subset validation

Then you will get results.bbox.csv under folder openimage_eqlv2

6. Evaluate results file using official API

Please refer this link

After this, you will see something like this.

OpenImagesDetectionChallenge_Precision/[email protected],0.5263230244227198                                                                                                                     OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/061hd_',0.4198356678732905                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/06m11',0.40262261023434986                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/03120',0.5694096972722996                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/01kb5b',0.20532245532245533                                                                                            OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0120dh',0.7934685035604202                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0dv5r',0.7029194449221794                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0jbk',0.5959245714028935

7. Parse the AP file and output the grouped AP

cd $project_dir

PYTHONPATH=./:$PYTHONPATH python tools/parse_openimage_metric.py --file openimage_eqlv2_2x/metric

And you will get:

mAP 0.5263230244227198
mAP0: 0.4857693606436219
mAP1: 0.52047262478471
mAP2: 0.5304580597832517
mAP3: 0.5348747991854581
mAP4: 0.5588236678031849

Main Results on OpenImages

Methods AP AP1 AP2 AP3 AP4 AP5
Faster-R50 43.1 26.3 42.5 45.2 48.2 52.6
EQL 45.3 32.7 44.6 47.3 48.3 53.1
EQLv2 52.6 48.6 52.0 53.0 53.4 55.8
Faster-R101 46.0 29.2 45.5 49.3 50.9 54.7
EQL 48.0 36.1 47.2 50.5 51.0 55.0
EQLv2 55.1 51.0 55.2 56.6 55.6 57.5

Citation

If you use the equalization losses, please cite our papers.

@article{tan2020eqlv2,
  title={Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection},
  author={Tan, Jingru and Lu, Xin and Zhang, Gang and Yin, Changqing and Li, Quanquan},
  journal={arXiv preprint arXiv:2012.08548},
  year={2020}
}
@inproceedings{tan2020equalization,
  title={Equalization loss for long-tailed object recognition},
  author={Tan, Jingru and Wang, Changbao and Li, Buyu and Li, Quanquan and Ouyang, Wanli and Yin, Changqing and Yan, Junjie},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11662--11671},
  year={2020}
}

Credits

The code for converting openimage to LVIS is from this repo.

Owner
Jingru Tan
Jingru Tan
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022