CRISP: Critical Path Analysis of Microservice Traces

Related tags

Data AnalysisCRISP
Overview

CRISP: Critical Path Analysis of Microservice Traces

This repo contains code to compute and present critical path summary from Jaeger microservice traces. To use first collect the microservice traces of a specific endpoint in a directory (say traces). Let the traces be for OP operation and SVC service (these are Jaeger termonologies). python3 process.py --operationName OP --serviceName SVC -t <path to trace> -o . --parallelism 8 will produce the critical path summary using 8 concurrent processes. The summary will be output in the current directory as an HTML file with a heatmap, flamegraph, and summary text in criticalPaths.html. It will also produce three flamegraphs flame-graph-*.svg for three different percentile values.

The script accepts the following options:

python3 process.py --help
usage: process.py [-h] -a OPERATIONNAME -s SERVICENAME [-t TRACEDIR] [--file FILE] -o OUTPUTDIR
                  [--parallelism PARALLELISM] [--topN TOPN] [--numTrace NUMTRACE] [--numOperation NUMOPERATION]

optional arguments:
  -h, --help            show this help message and exit
  -a OPERATIONNAME, --operationName OPERATIONNAME
                        operation name
  -s SERVICENAME, --serviceName SERVICENAME
                        name of the service
  -t TRACEDIR, --traceDir TRACEDIR
                        path of the trace directory (mutually exclusive with --file)
  --file FILE           input path of the trace file (mutually exclusivbe with --traceDir)
  -o OUTPUTDIR, --outputDir OUTPUTDIR
                        directory where output will be produced
  --parallelism PARALLELISM
                        number of concurrent python processes.
  --topN TOPN           number of services to show in the summary
  --numTrace NUMTRACE   number of traces to show in the heatmap
  --numOperation NUMOPERATION
                        number of operations to show in the heatmap
Owner
Uber Research
Uber's research projects. Projects in this organization are not built for production usage. Maintainance and supports are limited.
Uber Research
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Titanic data analysis for python

Titanic-data-analysis This Repo is an analysis on Titanic_mod.csv This csv file contains some assumed data of the Titanic ship after sinking This full

Hardik Bhanot 1 Dec 26, 2021
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

FangWei 1 Jan 16, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023