ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Related tags

Deep Learningactnn
Overview

ActNN : Activation Compressed Training

This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training by Jianfei Chen*, Lianmin Zheng*, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney, and Joseph E. Gonzalez.

TL; DR. ActNN is a PyTorch library for memory-efficient training. It reduces the training memory footprint by compressing the saved activations. ActNN is implemented as a collection of memory-saving layers. These layers have an identical interface to their PyTorch counterparts.

Abstract

The increasing size of neural network models has been critical for improvements in their accuracy, but device memory is not growing at the same rate. This creates fundamental challenges for training neural networks within limited memory environments. In this work, we propose ActNN, a memory-efficient training framework that stores randomly quantized activations for back propagation. We prove the convergence of ActNN for general network architectures, and we characterize the impact of quantization on the convergence via an exact expression for the gradient variance. Using our theory, we propose novel mixed-precision quantization strategies that exploit the activation's heterogeneity across feature dimensions, samples, and layers. These techniques can be readily applied to existing dynamic graph frameworks, such as PyTorch, simply by substituting the layers. We evaluate ActNN on mainstream computer vision models for classification, detection, and segmentation tasks. On all these tasks, ActNN compresses the activation to 2 bits on average, with negligible accuracy loss. ActNN reduces the memory footprint of the activation by 12×, and it enables training with a 6.6× to 14× larger batch size.

mem_speed_r50 Batch size vs. training throughput on ResNet-50. Red cross mark means out-of-memory. The shaded yellow region denotes the possible batch sizes with full precision training. ActNN achieves significantly larger maximum batch size over other state-of-the-art systems and displays a nontrivial trade-off curve.

Install

  • Requirements
torch>=1.7.1
torchvision>=0.8.2
  • Build
cd actnn
pip install -v -e .

Usage

mem_speed_benchmark/train.py is an example on using ActNN for models from torchvision.

Basic Usage

  • Step1: Configure the optimization level
    ActNN provides several optimization levels to control the trade-off between memory saving and computational overhead. You can set the optimization level by
import actnn
# available choices are ["L0", "L1", "L2", "L3", "L4", "L5"]
actnn.set_optimization_level("L3")

See set_optimization_level for more details.

  • Step2: Convert the model to use ActNN's layers.
model = actnn.QModule(model)

Note:

  1. Convert the model before calling .cuda().
  2. Set the optimization level before invoking actnn.QModule or constructing any ActNN layers.
  3. Automatic model conversion only works with standard PyTorch layers. Please use the modules (nn.Conv2d, nn.ReLU, etc.), not the functions (F.conv2d, F.relu).
  • Step3: Print the model to confirm that all the modules (Conv2d, ReLU, BatchNorm) are correctly converted to ActNN layers.
print(model)    # Should be actnn.QConv2d, actnn.QBatchNorm2d, etc.

Advanced Features

  • Convert the model manually.
    ActNN is implemented as a collection of memory-saving layers, including actnn.QConv1d, QConv2d, QConv3d, QConvTranspose1d, QConvTranspose2d, QConvTranspose3d, QBatchNorm1d, QBatchNorm2d, QBatchNorm3d, QLinear, QReLU, QSyncBatchNorm, QMaxPool2d. These layers have identical interface to their PyTorch counterparts. You can construct the model manually using these layers as the building blocks. See ResNetBuilder and resnet_configs in image_classification/image_classification/resnet.py for example.
  • (Optional) Change the data loader
    If you want to use per-sample gradient information for adaptive quantization, you have to update the dataloader to return sample indices. You can see train_loader in mem_speed_benchmark/train.py for example. In addition, you have to update the configurations.
from actnn import config, QScheme
config.use_gradient = True
QScheme.num_samples = 1300000   # the size of training set

You can find sample code in the above script.

Examples

Benchmark Memory Usage and Training Speed

See mem_speed_benchmark. Please do NOT measure the memory usage by nvidia-smi. nvidia-smi reports the size of the memory pool allocated by PyTorch, which can be much larger than the size of acutal used memory.

Image Classification

See image_classification

Object Detection, Semantic Segmentation, Self-Supervised Learning, ...

Here is the example memory-efficient training for ResNet50, built upon the OpenMMLab toolkits. We use ActNN with the default optimization level (L3). Our training runs are available at Weights & Biases.

Installation

  1. Install mmcv
export MMCV_ROOT=/path/to/clone/actnn-mmcv
git clone https://github.com/DequanWang/actnn-mmcv $MMCV_ROOT
cd $MMCV_ROOT
MMCV_WITH_OPS=1 MMCV_WITH_ORT=0 pip install -e .
  1. Install mmdet, mmseg, mmssl, ...
export MMDET_ROOT=/path/to/clone/actnn-mmdet
git clone https://github.com/DequanWang/actnn-mmdet $MMDET_ROOT
cd $MMDET_ROOT
python setup.py develop
export MMSEG_ROOT=/path/to/clone/actnn-mmseg
git clone https://github.com/DequanWang/actnn-mmseg $MMSEG_ROOT
cd $MMSEG_ROOT
python setup.py develop
export MMSSL_ROOT=/path/to/clone/actnn-mmssl
git clone https://github.com/DequanWang/actnn-mmssl $MMSSL_ROOT
cd $MMSSL_ROOT
python setup.py develop

Single GPU training

cd $MMDET_ROOT
python tools/train.py configs/actnn/faster_rcnn_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/ye0aax5s
# ActNN mAP 37.4 vs Official mAP 37.4
python tools/train.py configs/actnn/retinanet_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/1x9cwokw
# ActNN mAP 36.3 vs Official mAP 36.5
cd $MMSEG_ROOT
python tools/train.py configs/actnn/fcn_r50-d8_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/159if8da
# ActNN mIoU 72.9 vs Official mIoU 73.6
python tools/train.py configs/actnn/fpn_r50_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/25j9iyv3
# ActNN mIoU 74.7 vs Official mIoU 74.5

Multiple GPUs training

cd $MMSSL_ROOT
bash tools/dist_train.sh configs/selfsup/actnn/moco_r50_v2_bs512_e200_imagenet_2gpu.py 2
# https://wandb.ai/actnn/mmssl/runs/lokf7ydo
# https://wandb.ai/actnn/mmssl/runs/2efmbuww
# ActNN top1 67.3 vs Official top1 67.7

For more detailed guidance, please refer to the docs of mmcv, mmdet, mmseg, mmssl.

FAQ

  1. Does ActNN supports CPU training?
    Currently, ActNN only supports CUDA.

  2. Accuracy degradation / diverged training with ActNN.
    ActNN applies lossy compression to the activations. In some challenging cases, our default compression strategy might be too aggressive. In this case, you may try more conservative compression strategies (which consume more memory):

    • 4-bit per-group quantization
    actnn.set_optimization_level("L2")
    • 8-bit per-group quantization
    actnn.set_optimization_level("L2")
    actnn.config.activation_compression_bits = [8]

    If none of these works, you may report to us by creating an issue.

Correspondence

Please email Jianfei Chen and Lianmin Zheng. Any questions or discussions are welcomed!

Citation

If the actnn library is helpful in your research, please consider citing our paper:

@article{chen2021actnn,
  title={ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training},
  author={Chen, Jianfei and Zheng, Lianmin and Yao, Zhewei and Wang, Dequan and Stoica, Ion and Mahoney, Michael W and Gonzalez, Joseph E},
  journal={arXiv preprint arXiv:2104.14129},
  year={2021}
}
Owner
UC Berkeley RISE
REAL-TIME INTELLIGENT SECURE EXPLAINABLE SYSTEMS
UC Berkeley RISE
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022