Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

Overview

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation

Source code for the paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".
Paper accepted at British Machine Vision Conference (BMVC), 2021

Overview

We present a simple framework to improve performance of regression based knowledge distillation from self-supervised teacher networks. The teacher is trained using a standard self-supervised learning (SSL) technique. The student network is then trained to directly regress the teacher features (using MSE loss on normalized features). Importantly, the student architecture contains an additional multi-layer perceptron (MLP) head atop the CNN backbone during the distillation (training) stage. A deeper architecture provides the student higher capacity to predict the teacher representations. This additional MLP head can be removed during inference without hurting downstream performance. This is especially surprising since only the output of the MLP is trained to mimic the teacher and the backbone CNN features have a high MSE loss with the teacher features. This observation allows us to obtain better student models by using deeper models during distillation without altering the inference architecture. The train and test stage architectures are shown in the figure below.

Requirements

All our experiments use the PyTorch library. We recommend installing the following package versions:

  • python=3.7.6
  • pytorch=1.4
  • torchvision=0.5.0
  • faiss-gpu=1.6.1 (required for k-NN evaluation alone)

Instructions for PyTorch installation can be found here. GPU version of the FAISS package is necessary for k-NN evaluation of trained models. It can be installed using the following command:

pip install faiss-gpu

Dataset

We use the ImageNet-1k dataset in our experiments. Download and prepare the dataset using the PyTorch ImageNet training example code. The dataset path needs to be set in the bash scripts used for training and evaluation.

Training

Distillation can be performed by running the following command:

bash run.sh

Training with ResNet-50 teacher and ResNet-18 student requires nearly 2.5 days on 4 2080ti GPUs (~26m/epoch). The defualt hyperparameters values are set to ones used in the paper. Modify the teacher and student architectures as necessary. Set the approapriate paths for the ImageNet dataset root and the experiment root. The current code will generate a directory named exp_dir containing checkpoints and logs sub-directories.

Evaluation

Set the experiment name and checkpoint epoch in the evaluation bash scripts. The trained checkpoints are assumed to be stored as exp_dir/checkpoints/ckpt_epoch_<num>.pth. Edit the weights argument to load model parameters from a custom checkpoint.

k-NN Evaluation

k-NN evaluation requires FAISS-GPU package installation. We evaluate the performance of the CNN backbone features. Run k-NN evaluation using:

bash knn_eval.sh

The image features and results for k-NN (k=1 and 20) evaluation are stored in exp_dir/features/ path.

Linear Evaluation

Here, we train a single linear layer atop the CNN backbone using an SGD optimizer for 40 epochs. The evaluation can be performed using the following code:

bash lin_eval.sh

The evaluation results are stored in exp_dir/linear/ path. Set the use_cache argument in the bash script to use cached features for evaluation. Using this argument will result in a single round of feature calculation for caching and 40 epochs of linear layer training using the cached features. While it usually results in slightly reduced performance, it can be used for faster evaluation of intermediate checkpoints.

Pretrained Models

To evaluate the pretrained models, create an experiment root directory exp_dir and place the checkpoint in exp_dir/checkpoints/. Set the exp argument in the evaluation bash scripts to perform k-NN and linear evaluation. We provide the pretrained teacher (obtained using the officially shared checkpoints for the corresponding SSL teacher) and our distilled student model weights. We use cached features of the teacher in some of our experiments for faster training.

Teacher Student 1-NN Linear
MoCo-v2 ResNet-50 MobileNet-v2 55.5 69.1
MoCo-v2 ResNet-50 ResNet-18 54.8 65.1
SimCLR ResNet-50x4 ResNet-50 (cached) 60.3 74.2
BYOL ResNet-50 ResNet-18 (cached) 56.7 66.8
SwAV ResNet-50 (cached) ResNet-18 54.0 65.8

TODO

  • Add code for transfer learning evaluation
  • Reformat evaluation codes
  • Add code to evaluate models at different stages of CNN backbone and MLP head

Citation

If you make use of the code, please cite the following work:

@inproceedings{navaneet2021simreg,
 author = {Navaneet, K L and Koohpayegani, Soroush Abbasi and Tejankar, Ajinkya and Pirsiavash, Hamed},
 booktitle = {British Machine Vision Conference (BMVC)},
 title = {SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation},
 year = {2021}
}

License

This project is under the MIT license.

Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022