Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

Overview

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation

Source code for the paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".
Paper accepted at British Machine Vision Conference (BMVC), 2021

Overview

We present a simple framework to improve performance of regression based knowledge distillation from self-supervised teacher networks. The teacher is trained using a standard self-supervised learning (SSL) technique. The student network is then trained to directly regress the teacher features (using MSE loss on normalized features). Importantly, the student architecture contains an additional multi-layer perceptron (MLP) head atop the CNN backbone during the distillation (training) stage. A deeper architecture provides the student higher capacity to predict the teacher representations. This additional MLP head can be removed during inference without hurting downstream performance. This is especially surprising since only the output of the MLP is trained to mimic the teacher and the backbone CNN features have a high MSE loss with the teacher features. This observation allows us to obtain better student models by using deeper models during distillation without altering the inference architecture. The train and test stage architectures are shown in the figure below.

Requirements

All our experiments use the PyTorch library. We recommend installing the following package versions:

  • python=3.7.6
  • pytorch=1.4
  • torchvision=0.5.0
  • faiss-gpu=1.6.1 (required for k-NN evaluation alone)

Instructions for PyTorch installation can be found here. GPU version of the FAISS package is necessary for k-NN evaluation of trained models. It can be installed using the following command:

pip install faiss-gpu

Dataset

We use the ImageNet-1k dataset in our experiments. Download and prepare the dataset using the PyTorch ImageNet training example code. The dataset path needs to be set in the bash scripts used for training and evaluation.

Training

Distillation can be performed by running the following command:

bash run.sh

Training with ResNet-50 teacher and ResNet-18 student requires nearly 2.5 days on 4 2080ti GPUs (~26m/epoch). The defualt hyperparameters values are set to ones used in the paper. Modify the teacher and student architectures as necessary. Set the approapriate paths for the ImageNet dataset root and the experiment root. The current code will generate a directory named exp_dir containing checkpoints and logs sub-directories.

Evaluation

Set the experiment name and checkpoint epoch in the evaluation bash scripts. The trained checkpoints are assumed to be stored as exp_dir/checkpoints/ckpt_epoch_<num>.pth. Edit the weights argument to load model parameters from a custom checkpoint.

k-NN Evaluation

k-NN evaluation requires FAISS-GPU package installation. We evaluate the performance of the CNN backbone features. Run k-NN evaluation using:

bash knn_eval.sh

The image features and results for k-NN (k=1 and 20) evaluation are stored in exp_dir/features/ path.

Linear Evaluation

Here, we train a single linear layer atop the CNN backbone using an SGD optimizer for 40 epochs. The evaluation can be performed using the following code:

bash lin_eval.sh

The evaluation results are stored in exp_dir/linear/ path. Set the use_cache argument in the bash script to use cached features for evaluation. Using this argument will result in a single round of feature calculation for caching and 40 epochs of linear layer training using the cached features. While it usually results in slightly reduced performance, it can be used for faster evaluation of intermediate checkpoints.

Pretrained Models

To evaluate the pretrained models, create an experiment root directory exp_dir and place the checkpoint in exp_dir/checkpoints/. Set the exp argument in the evaluation bash scripts to perform k-NN and linear evaluation. We provide the pretrained teacher (obtained using the officially shared checkpoints for the corresponding SSL teacher) and our distilled student model weights. We use cached features of the teacher in some of our experiments for faster training.

Teacher Student 1-NN Linear
MoCo-v2 ResNet-50 MobileNet-v2 55.5 69.1
MoCo-v2 ResNet-50 ResNet-18 54.8 65.1
SimCLR ResNet-50x4 ResNet-50 (cached) 60.3 74.2
BYOL ResNet-50 ResNet-18 (cached) 56.7 66.8
SwAV ResNet-50 (cached) ResNet-18 54.0 65.8

TODO

  • Add code for transfer learning evaluation
  • Reformat evaluation codes
  • Add code to evaluate models at different stages of CNN backbone and MLP head

Citation

If you make use of the code, please cite the following work:

@inproceedings{navaneet2021simreg,
 author = {Navaneet, K L and Koohpayegani, Soroush Abbasi and Tejankar, Ajinkya and Pirsiavash, Hamed},
 booktitle = {British Machine Vision Conference (BMVC)},
 title = {SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation},
 year = {2021}
}

License

This project is under the MIT license.

Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023