Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Related tags

Deep Learningcqd
Overview

Continuous Query Decomposition

This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neural Link Predictors:

@inproceedings{
    arakelyan2021complex,
    title={Complex Query Answering with Neural Link Predictors},
    author={Erik Arakelyan and Daniel Daza and Pasquale Minervini and Michael Cochez},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=Mos9F9kDwkz}
}

In this work we present CQD, a method that reuses a pretrained link predictor to answer complex queries, by scoring atom predicates independently and aggregating the scores via t-norms and t-conorms.

Our code is based on an implementation of ComplEx-N3 available here.

Please follow the instructions next to reproduce the results in our experiments.

1. Install the requirements

We recommend creating a new environment:

% conda create --name cqd python=3.8 && conda activate cqd
% pip install -r requirements.txt

2. Download the data

We use 3 knowledge graphs: FB15k, FB15k-237, and NELL. From the root of the repository, download and extract the files to obtain the folder data, containing the sets of triples and queries for each graph.

% wget http://data.neuralnoise.com/cqd-data.tgz
% tar xvf cqd-data.tgz

3. Download the models

Then you need neural link prediction models -- one for each of the datasets. Our pre-trained neural link prediction models are available here:

% wget http://data.neuralnoise.com/cqd-models.tgz
% tar xvf cqd-data.tgz

3. Alternative -- Train your own models

To obtain entity and relation embeddings, we use ComplEx. Use the next commands to train the embeddings for each dataset.

FB15k

% python -m kbc.learn data/FB15k --rank 1000 --reg 0.01 --max_epochs 100  --batch_size 100

FB15k-237

% python -m kbc.learn data/FB15k-237 --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

NELL

% python -m kbc.learn data/NELL --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

Once training is done, the models will be saved in the models directory.

4. Answering queries with CQD

CQD can answer complex queries via continuous (CQD-CO) or combinatorial optimisation (CQD-Beam).

CQD-Beam

Use the kbc.cqd_beam script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_beam --model_path models/[model_filename].pt

Example:

% PYTHONPATH=. python3 kbc/cqd_beam.py \
  --model_path models/FB15k-model-rank-1000-epoch-100-*.pt \
  --dataset FB15K --mode test --t_norm product --candidates 64 \
  --scores_normalize 0 data/FB15k

models/FB15k-model-rank-1000-epoch-100-1602520745.pt FB15k product 64
ComplEx(
  (embeddings): ModuleList(
    (0): Embedding(14951, 2000, sparse=True)
    (1): Embedding(2690, 2000, sparse=True)
  )
)

[..]

This will save a series of JSON fils with results, e.g.

% cat "topk_d=FB15k_t=product_e=2_2_rank=1000_k=64_sn=0.json"
{
  "MRRm_new": 0.7542805715523118,
  "MRm_new": 50.71081983144581,
  "[email protected]_new": 0.6896709378392843,
  "[email protected]_new": 0.7955001359095913,
  "[email protected]_new": 0.8676865172456019
}

CQD-CO

Use the kbc.cqd_co script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_co data/FB15k --model_path models/[model_filename].pt --chain_type 1_2

Final Results

All results from the paper can be produced as follows:

% cd results/topk
% ../topk-parse.py *.json | grep rank=1000
d=FB15K rank=1000 & 0.779 & 0.584 & 0.796 & 0.837 & 0.377 & 0.658 & 0.839 & 0.355
d=FB237 rank=1000 & 0.279 & 0.219 & 0.352 & 0.457 & 0.129 & 0.249 & 0.284 & 0.128
d=NELL rank=1000 & 0.343 & 0.297 & 0.410 & 0.529 & 0.168 & 0.283 & 0.536 & 0.157
% cd ../cont
% ../cont-parse.py *.json | grep rank=1000
d=FB15k rank=1000 & 0.454 & 0.191 & 0.796 & 0.837 & 0.336 & 0.513 & 0.816 & 0.319
d=FB15k-237 rank=1000 & 0.213 & 0.131 & 0.352 & 0.457 & 0.146 & 0.222 & 0.281 & 0.132
d=NELL rank=1000 & 0.265 & 0.220 & 0.410 & 0.529 & 0.196 & 0.302 & 0.531 & 0.194
Owner
UCL Natural Language Processing
UCL Natural Language Processing
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022