Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Overview

ood-text-emnlp

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Files

  • fine_tune.py is used to finetune the GPT-2 models, and roberta_fine_tune.py is used to finetune the Roberta models.
  • perplexity.py and msp_eval.py is used to find the PPLs and MSPs of a dataset pair's exxamples using the finetuned model.

How to run

These steps show how to train both density estimation and calibration models on the MNLI dataset, and evaluated against SNLI.

A differet dataset pair can be used by updating the approriate dataset_name or id_data/ood_data values as shown below:

Training the Density Estimation Model (GPT-2)

Two options:

  1. Using HF Datasets -
    python fine_tune.py --dataset_name glue --dataset_config_name mnli --key premise --key2 hypothesis
    
    This also generates a txt train file corresponding to the dataset's text.
  2. Using previously generated txt file -
    python fine_tune.py --train_file data/glue_mnli_train.txt --fname glue_mnli"
    

Finding Perplexity (PPL)

This uses the txt files generated after running fine_tune.py to find the perplexity of the ID model on both ID and OOD validation sets -

id_data="glue_mnli"
ood_data="snli"
python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${ood_data}_val.txt --fname ${id_data}_$ood_data

python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${id_data}_val.txt --fname ${id_data}_$id_data

Training the Calibration Model (RoBERTa)

Two options:

  1. Using HF Datasets -

    id_data="mnli"
    python roberta_fine_tune.py --task_name $id_data --output_dir /scratch/ua388/roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data
    
  2. Using txt file generated earlier -

    id_data="mnli"
    python roberta_fine_tune.py --train_file data/mnli/${id_data}_conditional_train.txt --val_file data/mnli/${id_data}_val.txt --output_dir roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data"
    

    The *_conditional_train.txt file contains both the labels as well as the text.

Finding Maximum Softmax Probability (MSP)

Two options:

  1. Using HF Datasets -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --dataset_name $ood_data --fname ${id_data}_$ood_data
    
  2. Using txt file generated earlier -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --val_file data/${ood_data}_val.txt --fname ${id_data}_$ood_data --save_msp True
    

Evaluating AUROC

  1. Compute AUROC of PPL using compute_auroc in utils.py -

    id_data = 'glue_mnli'
    ood_data = 'snli'
    id_pps = utils.read_model_out(f'output/gpt2/{id_data}_{id_data}_pps.npy')
    ood_pps = utils.read_model_out(f'output/gpt2/{id_data}_{ood_data}_pps.npy')
    score = compute_auroc(id_pps, ood_pps)
    print(score)
    
  2. Compute AUROC of MSP -

     id_data = 'mnli'
     ood_data = 'snli'
     id_msp = utils.read_model_out(f'output/roberta/{id_data}_{id_data}_msp.npy')
     ood_msp = utils.read_model_out(f'output/roberta/{id_data}_{ood_data}_msp.npy')
     score = compute_auroc(-id_msp, -ood_msp)
     print(score)
    
Owner
Udit Arora
CS grad student at NYU
Udit Arora
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022