ANEA: Distant Supervision for Low-Resource Named Entity Recognition

Related tags

Deep Learninganea
Overview

ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA is a tool to automatically annotate named entities in unlabeled text based on entity lists for the use as distant supervision.

Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. ANEA is a tool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually.

An example of the workflow can be seen in this video. For more details, take a look at our paper (accepted at PML4DC @ ICLR'21). For the additional material of the paper, please check the subdirectory additional of this repository.

Installation

ANEA should run on all major operating systems. We recommend the installation via conda or miniconda:

git clone https://github.com/uds-lsv/anea

conda create -n anea python=3.7
conda activate anea
pip install spacy==2.2.4 Flask==1.1.1 fuzzywuzzy==0.18.0

For tokenizationa and lemmatization, a spacy language pack needs to be installed. Run the following command with the corresponding language code, e.g. en for English. Check https://spacy.io/usage for supported languages

python -m spacy download en

Download the Wikidata JSON dump from https://dumps.wikimedia.org/wikidatawiki/entities/ and extract it to the instance directory (this may take a while).

Running

After the installation, you can run ANEA using the following commands on the command line

conda activate anea
./run.sh

Then open the browser and go to the address http://localhost:5000/ If you run it for the first time, you should configure ANEA at the Settings tab.

The ANEA (server) tool can run on a different machine than the browser of the user. It is just necessary that the user's computer can access the port 5000 on the machine that the ANEA server is running on (e.g. via ssh port forwarding or opening the correspoding port on the firewall).

Support for Other Languages

ANEA uses Spacy for language preprocessing (tokenization and lemmatization). It currently supports English, German, French, Spanish, Portuguese, Italian, Dutch, Greek, Norwegian Bokmål and Lithuanian. For Estonian, EstNLTK, version 1.6, is supported by ANEA. In that case, ANEA needs to be installed with Python 3.6.

Text can also be preprocessed using external tools and then uploaded as whitespace tokenized text or in the CoNLL format (one token per line).

Other external preprocessing libraries can be added directly to ANEA by implementing a new Tokenizer class in autom_labeling_library/preprocessing.py (you can take a look at EstnltkTokenizer as an example) and adding it to the Preprocessing class. If you encounter any issues, just contact us.

Citation

If you use this tool, please cite us:

@article{hedderich21ANEA,
  author    = {Michael A. Hedderich and
               Lukas Lange and
               Dietrich Klakow},
  title     = {{ANEA:} Distant Supervision for Low-Resource Named Entity Recognition},
  journal   = {CoRR},
  volume    = {abs/2102.13129},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.13129},
  archivePrefix = {arXiv},
  eprint    = {2102.13129},
}

Development, Support & License

If you encounter any issues or problems when using ANEA, feel free to raise an issue on Github or contact us directly (mhedderich [at] lsv.uni-saarland [dot] de). We welcome contributes from other developers.

ANEA is licensed under the Apache License 2.0.

Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022