KaziText is a tool for modelling common human errors.

Related tags

Deep Learningkazitext
Overview

KaziText

KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatical error correction corpora in M2 format.

The tool was introduced in Understanding Model Robustness to User-generated Noisy Texts.

Requirements

A set of requirements is listed in requirements.txt. Moreover, UDPipe model has to be downloaded for used languages (see http://hdl.handle.net/11234/1-3131) and linked in udpipe_tokenizer.py.

Overview

KaziText defines a set of aspects located in aspects. These model following phenomena:

  • Casing Errors
  • Common Other Errors (for most common phrases)
  • Errors in Diacritics
  • Punctuation Errors
  • Spelling Errors
  • Errors in wrongly used suffix/prefix
  • Whitespace Errors
  • Word-Order Errors

Each aspect has a set of internal probabilities (e.g. the probability of a user typing first letter of a starting word in lower-case instead of upper-case) that are estimated from M2 GEC corpora.

A complete set of aspects with their internal probabilities is called profile. We provide precomputed profiles for Czech, English, Russian and German in profiles as json files. The profiles are additionally split into dev and test. Also there are 4 profiles for Czech and 2 profiles for English differing in the underlying user domain (e.g. natives vs second learners).

To noise a text using a profile, use:

python introduce_errors.py $infile $outfile $profile $lang 

introduce_errors.py script offers a variety of switches (run python introduce_errors.py --help to display them). One noteworthy is --alpha that serves for regulating final text error rate (set it to value lower than 1 to reduce number of errors; set to to value bigger than 1 to have more noisy texts). Apart for profiles themselves, we also precomputed set of alphas that are stored as .csv files in respective profiles folders and store values for alphas to reach 5-30 final text word error rates as well as so called reference-alpha word error rate that corresponds to the same error rate as the original M2 files the profile was estimated from had. To have for example noisy text at circa 5% word error rate noised by Romani profile, use --profile dev/cs_romi.json --alpha 0.2.

Moreover, we provide several scripts (noise*.py) for noising specific data formats.

To estimate a profile for given M2 file, run:

python estimate_all_ratios.py $m2_pattern outfile

To estimate normalization alphas file, see estimate_alpha.sh that describes iterative process of noising clean texts with an alpha, measuring text's noisiness and changing alpha respectively.

Other notes

  • Russian RULEC-GEC was normalized using normalize_russian_m2.py
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022