Image Matching Evaluation

Related tags

Deep LearningIME
Overview

Image Matching Evaluation (IME)

IME provides to test any feature matching algorithm on datasets containing ground-truth homographies.

Also, one can reproduce the results given in our paper Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods published in ICCV 2021 TradiCV Workshop.

Currently Supported Algorithms

Classical Learning-Based
SIFT SuperPoint
SURF SuperGlue
ORB Patch2Pix
KAZE DFM
AKAZE

Environment Setup

This repository is created using Anaconda.

Open a terminal in the IME folder and run the following commands;

  1. Run bash script to create environment for IME, download algorithms and datasets
bash install.sh
  1. Activate the environment
conda activate ime
  1. Run IME!
python3 main.ipy

Well done, you can find results on Results folder :)

Notes:

  1. For DFM algorithm you can arrange ratio test threshold using DFM/python/algorithm_wrapper_util.py by changing ratio_th (default = [0.9, 0.9, 0.9, 0.9, 0.95, 1.0]).

    For all classical algorithms you can arrange ratio test threshold by changing the ratio parameter of mnn_ratio_matcher function in algorithm_wrapper_util.py for each algortihm.

    For SuperPoint again you should change ratio parameter of mnn_ratio_matcher function in algorithm_wrapper.py

    For Patch2Pix you should change io_thres parameter in algorithm_wrapper_util.py

  2. Use get_names.py to select algorithms and datasets.

  3. You can put your own algorithm on Algorithm folder to evaluate with creating a wrapper with the same format. This wrapper should output the matched pixel positions between two images using the selected algorithm.

  4. You can put your own dataset on Dataset folder to evaluate by arranging the proper format. Dataset should be in the form of Dataset/subset/subsubset/

Reproducing Results Given in our Paper

We provide the results given in our paper in ICCV_Results folder. To reproduce the results, you can run an experiment for a specific ratio test or confidence threshold and copy the results in the relevant ratio threshold folder in hpatches_classical or hpatches_deep folder. Then, you can run rt_fig.py and auc_fig.py scripts to save and view the figures.

TODO

Algorithms to be added:

Datasets to be added:

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_ICCV,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
}
Owner
PhD student @ METU
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022