Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Overview

Enhanced Particle Swarm Optimization (PSO) with Python

GitHub license GitHub issues

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

Dependencies

  • Numpy
  • matplotlib

Utilities

Once the installation is finished (download or cloning), go the pso folder and follow the below simple guidelines to execute PSO effectively (either write the code in command line or in a python editor).

>>> from pso import PSO

Next, a fitness function (or cost function) is required. I have included four different fitness functions for example purposes namely fitness_1, fitness_2, fitness_3, and fitness_4.

Fitness-1 (Himmelblau's Function)

Minimize: f(x) = (x2 + y - 11)2 + (x + y2 - 7)2

Optimum solution: x = 3 ; y = 2

Fitness-2 (Booth's Function)

Minimize: f(x) = (x + 2y - 7)2 + (2x + y - 5)2

Optimum solution: x = 1 ; y = 3

Fitness-3 (Beale's Function)

Minimize: f(x) = (1.5 - x - xy)2 + (2.25 - x + xy2)2 + (2.625 - x + xy3)2

Optimum solution: x = 3 ; y = 0.5

Fitness-4

Maximize: f(x) = 2xy + 2x - x2 - 2y2

Optimum solution: x = 2 ; y = 1

>>> from fitness import fitness_1, fitness_2, fitness_3, fitness_4

Now, if you want, you can provide an initial position X0 and bound value for all the particles (not mandatory) and optimize (minimize or maximize) the fitness function using PSO:

NOTE: a bool variable min=True (default value) for MINIMIZATION PROBLEM and min=False for MAXIMIZATION PROBLEM

>>> PSO(fitness=fitness_1, X0=[1,1], bound=[(-4,4),(-4,4)]).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [3.0000078, 1.9999873]

OPTIMUM FITNESS
  > 0.0

When fitness_4 is used, observe that min=False since it is a Maximization problem.

>>> PSO(fitness=fitness_4, X0=[1,1], bound=[(-4,4),(-4,4)], min=False).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [2.0, 1.0]

OPTIMUM FITNESS
  > 2.0

Incase you want to print the fitness value for each iteration, then set verbose=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, verbose=True).execute()

You will see the following similar output:

Iteration:   0  | best global fitness (cost): 18.298822
Iteration:   1  | best global fitness (cost): 1.2203953
Iteration:   2  | best global fitness (cost): 0.8178153
Iteration:   3  | best global fitness (cost): 0.5902262
Iteration:   4  | best global fitness (cost): 0.166928
Iteration:   5  | best global fitness (cost): 0.0926638
Iteration:   6  | best global fitness (cost): 0.0926638
Iteration:   7  | best global fitness (cost): 0.0114517
Iteration:   8  | best global fitness (cost): 0.0114517
Iteration:   9  | best global fitness (cost): 0.0114517
Iteration:   10 | best global fitness (cost): 0.0078867
Iteration:   11 | best global fitness (cost): 0.0078867
Iteration:   12 | best global fitness (cost): 0.0078867
Iteration:   13 | best global fitness (cost): 0.0078867
Iteration:   14 | best global fitness (cost): 0.0069544
Iteration:   15 | best global fitness (cost): 0.0063058
Iteration:   16 | best global fitness (cost): 0.0063058
Iteration:   17 | best global fitness (cost): 0.0011039
Iteration:   18 | best global fitness (cost): 0.0011039
Iteration:   19 | best global fitness (cost): 0.0011039
Iteration:   20 | best global fitness (cost): 0.0011039
Iteration:   21 | best global fitness (cost): 0.0007225
Iteration:   22 | best global fitness (cost): 0.0005875
Iteration:   23 | best global fitness (cost): 0.0001595
Iteration:   24 | best global fitness (cost): 0.0001595
Iteration:   25 | best global fitness (cost): 0.0001595
Iteration:   26 | best global fitness (cost): 0.0001595
Iteration:   27 | best global fitness (cost): 0.0001178
Iteration:   28 | best global fitness (cost): 0.0001178
Iteration:   29 | best global fitness (cost): 0.0001178
Iteration:   30 | best global fitness (cost): 0.0001178
Iteration:   31 | best global fitness (cost): 0.0001178
Iteration:   32 | best global fitness (cost): 0.0001178
Iteration:   33 | best global fitness (cost): 0.0001178
Iteration:   34 | best global fitness (cost): 0.0001178
Iteration:   35 | best global fitness (cost): 0.0001178
Iteration:   36 | best global fitness (cost): 0.0001178
Iteration:   37 | best global fitness (cost): 2.91e-05
Iteration:   38 | best global fitness (cost): 1.12e-05
Iteration:   39 | best global fitness (cost): 1.12e-05
Iteration:   40 | best global fitness (cost): 1.12e-05
Iteration:   41 | best global fitness (cost): 1.12e-05
Iteration:   42 | best global fitness (cost): 1.12e-05
Iteration:   43 | best global fitness (cost): 1.12e-05
Iteration:   44 | best global fitness (cost): 1.12e-05
Iteration:   45 | best global fitness (cost): 1.12e-05
Iteration:   46 | best global fitness (cost): 1.12e-05
Iteration:   47 | best global fitness (cost): 2.4e-06
Iteration:   48 | best global fitness (cost): 2.4e-06
Iteration:   49 | best global fitness (cost): 2.4e-06
Iteration:   50 | best global fitness (cost): 2.4e-06

OPTIMUM SOLUTION
  > [1.0004123, 2.9990281]

OPTIMUM FITNESS
  > 2.4e-06

Now, incase you want to plot the fitness value for each iteration, then set plot=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, plot=True).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [1.0028365, 2.9977422]

OPTIMUM FITNESS
  > 1.45e-05

Fitness

Finally, in case you want to use the advanced features as mentioned above (say you want to update the weight inertia parameter w), simply use update_w=True and thats it. Similarly you can use update_c1=True (to update individual cognitive parameter c1), update_c2=True (to update social learning parameter c2), and update_vmax=True (to update maximum limited velocity of the particle vmax)

>>> PSO(fitness=fitness_1, update_w=True, update_c1=True).execute()

References:

[1] Almeida, Bruno & Coppo leite, Victor. (2019). Particle swarm optimization: a powerful technique for solving engineering problems. 10.5772/intechopen.89633.

[2] He, Yan & Ma, Wei & Zhang, Ji. (2016). The parameters selection of pso algorithm influencing on performance of fault diagnosis. matec web of conferences. 63. 02019. 10.1051/matecconf/20166302019.

[3] Clerc, M., and J. Kennedy. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. ieee transactions on evolutionary computation 6, no. 1 (february 2002): 58–73.

[4] Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in proceedings of the ieee international conferences on evolutionary computation, pp. 69–73, anchorage, alaska, usa, may 1998.

[5] G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E. F. Georgopoulos, & C. Dunis, Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization, european journal of operational research.

[6] Particle swarm optimization (pso) visually explained (https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14)

[7] Rajib Kumar Bhattacharjya, Introduction to Particle Swarm Optimization (http://www.iitg.ac.in/rkbc/ce602/ce602/particle%20swarm%20algorithms.pdf)

Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022