Understanding the field usage of any object in Salesforce

Overview

Understanding the field usage of any object in Salesforce

One of the biggest problems that I have addressed while working with Salesforce is to understand and evaluate the field usage of a custom object. This application does the work for you, generating a CSV/Excel file with the date of the last record that used each field, and the percentage of use across all of them.

To make this app work, you will need a System Administrator credential to log into Salesforce
This app is currently working with the Spyder IDE, which is part of Anaconda


Let's understand how it works!

Dependencies

First, we need our dependencies. We will use Pandas, datetime and Simple Salesforce

from simple_salesforce import Salesforce
import pandas as pd
import datetime

Credentials

Next, we are going to connect to Salesforce with Simple Salesforce

  sf = Salesforce(password='password',
            username='username',
            organizationId='organizationId')

Your organizationId should look like this, 00JH0000000tYml.
To find it, just follow the next steps (Lightning experience):

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • In the quick search bar (the one in the left) type Company Information
  • Click Company Information
  • Finally, look for Salesforce.com Organization ID. The ID will look like 00JH0000000tYml

The Object

Now you will need to plug the object name. The object name is the API Name of the object. Normally, if it is a custom object, it will finish like this, __c
To find the API NAME just follow these instructions:

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • Click on Object Manager in the header of the page
  • Find your object using the name and copy the API NAME which is next to the name of the object

This part of the code if going to use the name of the object to bring all the fields
  object_to_evaluate = "object"
  object_fields = getattr(sf, object_to_evaluate).describe()

The Date

This part is important and will make you think. The default code is going to bring the data from the last year. Is important to understand what happened during that period. If you release a new field a week ago, it will show that it was use a couple of days ago, but the usage will be really low, around a 2% (7/365). You can change the days to evaluate simple change the 365 for the number of days that you want.

last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

The Result

Now we are going to iterate all the fields and get the created date from the last record that used the field, and the number of records that use that field during the period (one year).

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True)">
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

Some Formatting

Formatting is a nice to have to understand the result, especially if you are going to share the insights. We are going to rename some columns, format the dates column in a way that CSV/Excel can understand, and we are adding a % of use column.

data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

The Files

Finally, we are going to export the files to CSV and Excel, so you can choose which one you prefer to use. The files will be stored in the same folder as the app. So, if you are running this app in your Desktop folder, the CSV and Excel files will be store in the same folder.

data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

If you like it, remember to
Buy Me A Coffee


The final code will look like this:

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True) # Format the CSV/Excel report data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True) data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date data_to_csv = data_to_csv.drop('attributes', axis=1) max_value = data_to_csv['Quantity'].max() data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value # Export the data to a CSV/Excel file data_to_csv.to_csv('last Field Usage Date.csv') data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")">
from simple_salesforce import Salesforce
import pandas as pd
import datetime

# Connection to Salesforce
sf = Salesforce(password='password',
                username='username',
                organizationId='organizationId')


# Change the name to the object that you want to evaluate. If is a custom object remember to end it with __c
object_to_evaluate = "object"

# Get all the fields from the Object
object_fields = getattr(sf, object_to_evaluate).describe()

# Define an empty list to append the information
data = []

# Create a date variable to define from when we want to get the data
last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

# Iterate over the fields and bring the last record created Date where the field wasn't empty
# If the record is not found, store it in the CSV/Excel file as not found
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

# Format the CSV/Excel report
data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

# Export the data to a CSV/Excel file
data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

HOPE IT HELPS!

If you like it, remember to
Buy Me A Coffee

Owner
Sebastian Undurraga
Sebastian Undurraga
Library to emulate the Sneakers movie effect

py-sneakers Port to python of the libnms C library To recreate the famous data decryption effect shown in the 1992 film Sneakers. Install pip install

Nicolas Rebagliati 11 Aug 27, 2021
This repo created to complete the task HACKTOBER 2021, contribute now and get your special T-Shirt & Sticker. TO SUPPORT OWNER PLEASE PRESS STAR BUTTON

❤ THIS REPO WILL CLOSED IN 31 OCT 00:00 ❤ This repository will automatically assign the hacktoberfest and hacktoberfest-accepted labels to all submitt

Rajendra Rakha 307 Dec 27, 2022
Open Source Repository for CFD Solvers

Background and Validation This wiki is built in Notion. Here are all the tips you need to contribute. General Background Flow over a cylinder The proj

1 Dec 30, 2021
A utility control surface for Ableton Live that makes the initialization of a Mixdown quick

Automate Mixdown initialization A script that transfers all the VSTs on your MIDI tracks to a new track so you can freeze your MIDI tracks and then co

Aarnav 0 Feb 23, 2022
Feapder的管道扩展

FEAPDER 管道扩展 简介 此模块为feapder的pipelines扩展,感谢广大开发者对feapder的贡献 随着feapder支持的pipelines越来越多,为减少feapder的体积,特将pipelines提出,使用者可按需安装 管道 PostgreSQL 贡献者:沈瑞祥 联系方式:r

boris 9 Dec 07, 2022
A Python tool to check ASS subtitles for common mistakes and errors.

A Python tool to check ASS subtitles for common mistakes and errors.

1 Dec 18, 2021
Download and process GOES-16 and GOES-17 data from NOAA's archive on AWS using Python.

Download and display GOES-East and GOES-West data GOES-East and GOES-West satellite data are made available on Amazon Web Services through NOAA's Big

Brian Blaylock 88 Dec 16, 2022
Daily knowledge pills to get better in Python.

Python daily pills Daily knowledge pills to get better Python code. Why Does your Python code suffers of any of this symptoms? Incorrect Indentation I

Jeferson Vaz dos Santos 35 Sep 19, 2022
Navigate to your directory of choice the proceed as follows

Installation 🚀 Navigate to your directory of choice the proceed as follows; 1 .Clone the git repo and create a virtual environment Depending on your

Ondiek Elijah Ochieng 2 Jan 31, 2022
Model Quantization Benchmark

MQBench Update V0.0.2 Fix academic prepare setting. More deployable prepare process. Fix setup.py. Fix deploy on SNPE. Fix convert_deploy bug. Add Qua

500 Jan 06, 2023
Generate PNG filles from NFO files.

Installation git clone https://github.com/pcroland/nfopng cd nfopng pip install -r requirements.txt Usage ❯ ./nfopng.py usage: nfopng.py [-h] [-v] [-i

4 Jun 26, 2022
Python script which allows for automatic registration in Golfbox

Python script which allows for automatic registration in Golfbox

Guðni Þór Björnsson 8 Dec 04, 2021
Use Ghidra Structs in Python

Strudra Welcome to Strudra, a way to craft Ghidra structs in python, using ghidra_bridge. Example First, init Strudra - you can pass in a custom Ghidr

Dominik Maier 27 Nov 24, 2022
A bunch of codes for procedurally modeling and texturing futuristic cities.

Procedural Futuristic City This is our final project for CPSC 479. We created a procedural futuristic city complete with Worley noise procedural textu

1 Dec 22, 2021
Inviare messaggi tramite app IO a partire da dati contenuti in file .csv

parlaConIO Inviare messaggi tramite app IO a partire da dati contenuti in file .csv -- Nessun obbligo, ma in caso di clonazione o uso del programma c

Francesco Del Castillo 6 Aug 22, 2022
An Android app that runs Elm in a webview. And a Python script to build the app or install it on the device.

Requirements You need to have installed: the Android SDK Elm Python git Starting a project Clone this repo and cd into it: $ git clone https://github.

Benjamin Le Forestier 11 Mar 17, 2022
A docker container (Docker Desktop) for a simple python Web app few unit tested

Short web app using Flask, tested with unittest on making massive requests, responses of the website, containerized

Omar 1 Dec 13, 2021
Safely pass trusted data to untrusted environments and back.

ItsDangerous ... so better sign this Various helpers to pass data to untrusted environments and to get it back safe and sound. Data is cryptographical

The Pallets Projects 2.6k Jan 01, 2023
A simple script for generating screenshots with Vapoursynth

Vapoursynth-Screenshots A simple script for generating screenshots with Vapoursynth. About I'm lazy, and hate changing variables for each batch of scr

7 Dec 31, 2022
A simple python project that can find Tangkeke in a given image.

A simple python project that can find Tangkeke in a given image. Make the real Tangkeke image as a kernel to convolute the target image. The area wher

张志衡 1 Dec 08, 2021