Understanding the field usage of any object in Salesforce

Overview

Understanding the field usage of any object in Salesforce

One of the biggest problems that I have addressed while working with Salesforce is to understand and evaluate the field usage of a custom object. This application does the work for you, generating a CSV/Excel file with the date of the last record that used each field, and the percentage of use across all of them.

To make this app work, you will need a System Administrator credential to log into Salesforce
This app is currently working with the Spyder IDE, which is part of Anaconda


Let's understand how it works!

Dependencies

First, we need our dependencies. We will use Pandas, datetime and Simple Salesforce

from simple_salesforce import Salesforce
import pandas as pd
import datetime

Credentials

Next, we are going to connect to Salesforce with Simple Salesforce

  sf = Salesforce(password='password',
            username='username',
            organizationId='organizationId')

Your organizationId should look like this, 00JH0000000tYml.
To find it, just follow the next steps (Lightning experience):

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • In the quick search bar (the one in the left) type Company Information
  • Click Company Information
  • Finally, look for Salesforce.com Organization ID. The ID will look like 00JH0000000tYml

The Object

Now you will need to plug the object name. The object name is the API Name of the object. Normally, if it is a custom object, it will finish like this, __c
To find the API NAME just follow these instructions:

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • Click on Object Manager in the header of the page
  • Find your object using the name and copy the API NAME which is next to the name of the object

This part of the code if going to use the name of the object to bring all the fields
  object_to_evaluate = "object"
  object_fields = getattr(sf, object_to_evaluate).describe()

The Date

This part is important and will make you think. The default code is going to bring the data from the last year. Is important to understand what happened during that period. If you release a new field a week ago, it will show that it was use a couple of days ago, but the usage will be really low, around a 2% (7/365). You can change the days to evaluate simple change the 365 for the number of days that you want.

last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

The Result

Now we are going to iterate all the fields and get the created date from the last record that used the field, and the number of records that use that field during the period (one year).

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True)">
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

Some Formatting

Formatting is a nice to have to understand the result, especially if you are going to share the insights. We are going to rename some columns, format the dates column in a way that CSV/Excel can understand, and we are adding a % of use column.

data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

The Files

Finally, we are going to export the files to CSV and Excel, so you can choose which one you prefer to use. The files will be stored in the same folder as the app. So, if you are running this app in your Desktop folder, the CSV and Excel files will be store in the same folder.

data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

If you like it, remember to
Buy Me A Coffee


The final code will look like this:

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True) # Format the CSV/Excel report data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True) data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date data_to_csv = data_to_csv.drop('attributes', axis=1) max_value = data_to_csv['Quantity'].max() data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value # Export the data to a CSV/Excel file data_to_csv.to_csv('last Field Usage Date.csv') data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")">
from simple_salesforce import Salesforce
import pandas as pd
import datetime

# Connection to Salesforce
sf = Salesforce(password='password',
                username='username',
                organizationId='organizationId')


# Change the name to the object that you want to evaluate. If is a custom object remember to end it with __c
object_to_evaluate = "object"

# Get all the fields from the Object
object_fields = getattr(sf, object_to_evaluate).describe()

# Define an empty list to append the information
data = []

# Create a date variable to define from when we want to get the data
last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

# Iterate over the fields and bring the last record created Date where the field wasn't empty
# If the record is not found, store it in the CSV/Excel file as not found
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

# Format the CSV/Excel report
data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

# Export the data to a CSV/Excel file
data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

HOPE IT HELPS!

If you like it, remember to
Buy Me A Coffee

Owner
Sebastian Undurraga
Sebastian Undurraga
This tool allows you to do goole dorking much easier

This tool allows you to do goole dorking much easier

Steven 8 Mar 06, 2022
Vector tile server for the Wildfire Predictive Services Unit

wps-tileserver Vector tile server for the Wildfire Predictive Services Unit Overview The intention of this project is to: provide tools to easily spin

Province of British Columbia 6 Dec 20, 2022
Draw random mazes in python

a-maze Draw random mazes in python This program generates and draws a rectangular maze, with an entrance on one side and one on the opposite side. The

Andrea Pasquali 1 Nov 21, 2021
A turtlebot auto controller allows robot to autonomously explore environment.

A turtlebot auto controller allows robot to autonomously explore environment.

Yuliang Zhong 1 Nov 10, 2021
Projeto de Jogo de dados em Python 3 onde é definido o lado a ser apostado e número de jogadas, pontuando os acertos e exibindo se ganhou ou perdeu.

Jogo de DadoX Projeto de script que simula um Jogo de dados em Python 3 onde é definido o lado a ser apostado (1, 2, 3, 4, 5 e 6) ou se vai ser um núm

Estênio Mariano 1 Jul 10, 2021
The first Python 1v1.lol triggerbot working with colors !

1v1.lol TriggerBot Afin d'utiliser mon triggerbot, vous devez activer le plein écran sur 1v1.lol sur votre naviguateur (quelque-soit ce dernier). Vous

Venax 5 Jul 25, 2022
Python Programming Bootcamp

python-bootcamp Python Programming Bootcamp Begin: 27th August 2021 End: 8th September 2021 Registration deadline: 22nd August 2021 Fees: No course or

Rohitash Chandra 11 Oct 19, 2022
Anki for desktop computers

Anki This repo contains the source code for the computer version of Anki. If you'd like to try development builds of Anki but don't feel comfortable b

Ankitects 12.9k Jan 09, 2023
contextlib2 is a backport of the standard library's contextlib module to earlier Python versions.

contextlib2 is a backport of the standard library's contextlib module to earlier Python versions. It also sometimes serves as a real world proving gro

Jazzband 35 Dec 23, 2022
🎴 LearnQuick is a flashcard application that you can study with decks and cards.

🎴 LearnQuick is a flashcard application that you can study with decks and cards. The main function of the application is to show the front sides of the created cards to the user and ask them to guess

Mehmet Güdük 7 Aug 21, 2022
PyLaboratory 0 Feb 07, 2022
A free website that keeps the people informed about housing and evictions.

Eviction Tracker Currently helping verify detainer warrant data for middle Tennessee - via Middle TN DSA - Red Door Collective Features Presents data

Red Door Collective 7 Dec 14, 2022
TurtleBot Control App - TurtleBot Control App With Python

TURTLEBOT CONTROL APP INDEX: 1. Introduction 2. Environments 2.1. Simulated Envi

Rafanton 4 Aug 03, 2022
Fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis

fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis. Includes a cli kit, a curses GUI, ObjC header dumping, and much more.

cynder 301 Dec 28, 2022
🇮🇳 A Indian Flag Animation Project Made With Python

🇮🇳 A Indian Flag Animation Project Made With Python

MuFaz-TG 2 Oct 21, 2022
Like Docker, but for Squeak. You know, for kids.

Squeaker Like Docker, but for Smalltalk images. You know, for kids. It's a small program that helps in automated derivation of configured Smalltalk im

Tony Garnock-Jones 14 Sep 11, 2022
A collection of examples of using cocotb for functional verification of VHDL designs with GHDL.

At the moment, this repo is in an early state and serves as a learning tool for me. So it contains a a lot of quirks and code which can be done much better by cocotb-professionals.

T. Meissner 7 Mar 10, 2022
Simple cash register system made with guizero

Eje-Casher なにこれ guizeroで作った簡易レジシステムです。実際にコミケで使う予定です。 これを誰かがそのまま使うかどうかというよりは、guiz

Akira Ouchi 4 Nov 07, 2022
Packages of Example Data for The Effect

causaldata This repository will contain R, Stata, and Python packages, all called causaldata, which contain data sets that can be used to implement th

103 Dec 24, 2022
A modern message based async agent framework

Munggoggo A modern message based async agent framework An asyncio based agent platform written in Python and based on RabbitMQ. Agents are isolated pr

24 Dec 28, 2022