Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Overview

Simple-Image-Classification

Simple Image Classification Code (PyTorch)

Yechan Kim

This repository contains:

  • Python3 / Pytorch code for multi-class image classification

Prerequisites

  • See requirements.txt for details.
torch
torchvision
matplotlib
scikit-learn
tqdm            # not mandatory but recommended
tensorboard     # not mandatory but recommended

How to use

  1. The directory structure of your dataset should be as follows. (You can use our toy-examples: unzip cifar10_dummy.zip.)
|โ€”โ€” ๐Ÿ“ your_own_dataset
	|โ€”โ€” ๐Ÿ“ train
		|โ€”โ€” ๐Ÿ“ class_1
			|โ€”โ€” ๐Ÿ–ผ๏ธ 1.jpg
			|โ€”โ€” ...
		|โ€”โ€” ๐Ÿ“ class_2 
			|โ€”โ€” ๐Ÿ–ผ๏ธ ...
	|โ€”โ€” ๐Ÿ“ valid
		|โ€”โ€” ๐Ÿ“ class_1
		|โ€”โ€” ๐Ÿ“ ... 
	|โ€”โ€” ๐Ÿ“ test
		|โ€”โ€” ๐Ÿ“ class_1
		|โ€”โ€” ๐Ÿ“ ... 
  1. Check __init__.py. You might need to modify variables and add somethings (transformation, optimizer, lr_schduler ...). ๐Ÿ’ Tip You can add your own loss function as follows:
...
def get_loss_function(loss_function_name, device):
    ... 
    elif loss_function_name == 'your_own_function_name':  # add +
        return your_own_function()
    ...
...
  1. Run train.py for training. The below is an example. See src/my_utils/parser.py for details. ๐Ÿ’ Tip --loss_function='CE' means that you choose softmax-cross-entropy (default) for your loss.
python train.py --network_name='resnet34_for_tiny' --dataset_dir='./cifar10_dummy' \
--batch_size=256 --epochs=5  \
--lr=0.1 --lr_step='[60, 120, 160]' --lr_step_gamma=0.5 --lr_warmup_epochs=5 \
--auto_mean_std --store_weights --store_loss_acc_log --store_logits --store_confusion_matrix \
--loss_function='your_own_function_name' --transform_list_name='CIFAR' --tag='train-001'
  1. Run test.py for test. The below is an example. See src/my_utils/parser.py for details.
python test.py --network_name='resnet34_for_tiny' --dataset_dir='./cifar10_dummy' \
--auto_mean_std --store_logits --store_confusion_matrix \
--checkpoint='pretrained_model_weights.pt'

Trailer

  1. If you install tqdm, you can check the progress of training. readme1

  2. If you install tensorboard, you can check the acc/loss changes and confusion matrices during training. readme1

Contribution

๐Ÿ› If you find any bugs or have opinions for further improvements, feel free to contact me ([email protected]). All contributions are welcome.

Reference

  1. https://github.com/weiaicunzai/pytorch-cifar100
  2. https://medium.com/@djin31/how-to-plot-wholesome-confusion-matrix-40134fd402a8 (Confusion Matrix)
  3. https://pytorch.org/ignite/generated/ignite.handlers.param_scheduler.create_lr_scheduler_with_warmup.html
Owner
Yechan Kim
GIST, Machine Learning and Vision Lab.
Yechan Kim
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner ๅˆไธ€ไธชๅŽŸ็ฅžๅœฃ้—็‰ฉๅฏผๅ‡บๅ™จ ไป‹็ป ่ฏฅไป“ๅบ“ไธบ Yas ็š„ๆจกๅž‹่ฎญ็ปƒ็จ‹ๅบ ็›ธๅ…ณ่ต„ๆ–™ MobileNetV3 CRNN ไฝฟ็”จ ๅ‡่ฎพไฝ ไผš่ฎพ็ฝฎๅŸบๆœฌ็š„pytorch็Žฏๅขƒใ€‚ ็”Ÿๆˆๆ•ฐๆฎ้›† python main.py gen ่ฎญ็ปƒ

wormtql 18 Jan 08, 2023
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pรถnitz 12 Nov 22, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022