Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

Overview

HiFi-GAN+

This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All You Need by Jiaqi Su, Yunyun Wang, Adam Finkelstein, and Zeyu Jin.

The model takes a band-limited audio signal (usually 8/16/24kHz) and attempts to reconstruct the high frequency components needed to restore a full-band signal at 48kHz. This is useful for upsampling low-rate outputs from upstream tasks like text-to-speech, voice conversion, etc. or enhancing audio that was filtered to remove high frequency noise. For more information, please see this blog post.

Status

PyPI Tests Coveralls DOI

Wandb Gradio Colab

Usage

The example below uses a pretrained HiFi-GAN+ model to upsample a 1 second 24kHz sawtooth to 48kHz.

import torch
from hifi_gan_bwe import BandwidthExtender

model = BandwidthExtender.from_pretrained("hifi-gan-bwe-10-42890e3-vctk-48kHz")

fs = 24000
x = torch.full([fs], 261.63 / fs).cumsum(-1) % 1.0 - 0.5
y = model(x, fs)

There is a Gradio demo on HugggingFace Spaces where you can upload audio clips and run the model. You can also run the model on Colab with this notebook.

Running with pipx

The HiFi-GAN+ library can be run directly from PyPI if you have the pipx application installed. The following script uses a hosted pretrained model to upsample an MP3 file to 48kHz. The input audio can be in any format supported by the audioread library, and the output can be in any format supported by soundfile.

pipx run --python=python3.9 hifi-gan-bwe \
  hifi-gan-bwe-10-42890e3-vctk-48kHz \
  input.mp3 \
  output.wav

Running in a Virtual Environment

If you have a Python 3.9 virtual environment installed, you can install the HiFi-GAN+ library into it and run synthesis, training, etc. using it.

pip install hifi-gan-bwe

hifi-synth hifi-gan-bwe-10-42890e3-vctk-48kHz input.mp3 output.wav

Pretrained Models

The following models can be loaded with BandwidthExtender.from_pretrained and used for audio upsampling. You can also download the model file from the link and use it offline.

Name Sample Rate Parameters Wandb Metrics Notes
hifi-gan-bwe-10-42890e3-vctk-48kHz 48kHz 1M bwe-10-42890e3 Same as bwe-05, but uses bandlimited interpolation for upsampling, for reduced noise and aliasing. Uses the same parameters as resampy's kaiser_best mode.
hifi-gan-bwe-11-d5f542d-vctk-8kHz-48kHz 48kHz 1M bwe-11-d5f542d Same as bwe-10, but trained only on 8kHz sources, for specialized upsampling.
hifi-gan-bwe-12-b086d8b-vctk-16kHz-48kHz 48kHz 1M bwe-12-b086d8b Same as bwe-10, but trained only on 16kHz sources, for specialized upsampling.
hifi-gan-bwe-13-59f00ca-vctk-24kHz-48kHz 48kHz 1M bwe-13-59f00ca Same as bwe-10, but trained only on 24kHz sources, for specialized upsampling.
hifi-gan-bwe-05-cd9f4ca-vctk-48kHz 48kHz 1M bwe-05-cd9f4ca Trained for 200K iterations on the VCTK speech dataset with noise agumentation from the DNS Challenge dataset.

Training

If you want to train your own model, you can use any of the methods above to install/run the library or fork the repo and run the script commands locally. The following commands are supported:

Name Description
hifi-train Starts a new training run, pass in a name for the run.
hifi-clone Clone an existing training run at a given or the latest checkpoint.
hifi-export Optimize a model for inference and export it to a PyTorch model file (.pt).
hifi-synth Run model inference using a trained model on a source audio file.

For example, you might start a new training run called bwe-01 with the following command:

hifi-train 01

To train a model, you will first need to download the VCTK and DNS Challenge datasets. By default, these datasets are assumed to be in the ./data/vctk and ./data/dns directories. See train.py for how to specify your own training data directories. If you want to use a custom training dataset, you can implement a dataset wrapper in datasets.py.

The training scripts use wandb.ai for experiment tracking and visualization. Wandb metrics can be disabled by passing --no_wandb to the training script. All of my own experiment results are publicly available at wandb.ai/brentspell/hifi-gan-bwe.

Each training run is identified by a name and a git hash (ex: bwe-01-8abbca9). The git hash is used for simple experiment tracking, reproducibility, and model provenance. Using git to manage experiments also makes it easy to change model hyperparameters by simply changing the code, making a commit, and starting the training run. This is why there is no hyperparameter configuration file in the project, since I often end up having to change the code anyway to run interesting experiments.

Development

Setup

The following script creates a virtual environment using pyenv for the project and installs dependencies.

pyenv install 3.9.10
pyenv virtualenv 3.9.10 hifi-gan-bwe
pip install -r requirements.txt

If you want to run the hifi-* scripts described above in development, you can install the package locally:

pip install -e .

You can then run tests, etc. follows:

pytest --cov=hifi_gan_bwe
black .
isort --profile=black .
flake8 .
mypy .

These checks are also included in the pre-commit configuration for the project, so you can set them up to run automatically on commit by running

pre-commit install

Acknowledgements

The original research on the HiFi-GAN+ model is not my own, and all credit goes to the paper's authors. I also referred to kan-bayashi's excellent Parallel WaveGAN implementation, specifically the WaveNet module. If you use this code, please cite the original paper:

@inproceedings{su2021bandwidth,
  title={Bandwidth extension is all you need},
  author={Su, Jiaqi and Wang, Yunyun and Finkelstein, Adam and Jin, Zeyu},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={696--700},
  year={2021},
  organization={IEEE},
  url={https://doi.org/10.1109/ICASSP39728.2021.9413575},
}

License

Copyright © 2022 Brent M. Spell

Licensed under the MIT License (the "License"). You may not use this package except in compliance with the License. You may obtain a copy of the License at

https://opensource.org/licenses/MIT

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Brent M. Spell
Brent M. Spell
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022