Ascend your Jupyter Notebook usage

Overview

Jupyter Ascending

Sync Jupyter Notebooks from any editor

Jupyter Ascending

About

Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then instantly sync and execute that code in the Jupyter notebook running in your browser.

It's the best of both worlds--the autocomplete, keybindings, and refactoring tools you love in your favorite editor, plus the great visualization abilities of a Jupyter notebook.

Combined with basic syncing of your code to a remote server, you can have all the power of a beefy dev-server with all the convenience of editing code locally.

Installation

$ pip install jupyter_ascending && \
jupyter nbextension    install jupyter_ascending --sys-prefix --py && \
jupyter nbextension     enable jupyter_ascending --sys-prefix --py && \
jupyter serverextension enable jupyter_ascending --sys-prefix --py

You can confirm it's installed by checking for jupyter_ascending in:

$ jupyter nbextension     list
$ jupyter serverextension list

Usage

Quickstart

  1. python -m jupyter_ascending.scripts.make_pair --base example

    This makes a pair of synced py and ipynb files, example.sync.py and example.sync.ipynb.

  2. Start jupyter and open the notebook:

    jupyter notebook example.sync.ipynb

  3. Add some code to the .sync.py file, e.g.

    echo 'print("Hello World!")' >> example.sync.py

  4. Sync the code into the jupyter notebook:

    python -m jupyter_ascending.requests.sync --filename example.sync.py

  5. Run that cell of code

    python -m jupyter_ascending.requests.execute --filename example.sync.py --line 16

Set up one of the editor integrations to do all of this from within your favorite editor!

Working with multiple jupyter servers or alternate ports

Currently Jupyter Ascending expects the jupyter server to be running at localhost:8888. If it's running elsewhere (eg due to having multiple jupyter notebooks open), you'll need to set the env variables JUPYTER_ASCENDING_EXECUTE_HOST and JUPYTER_ASCENDING_EXECUTE_PORT appropriately both where you use the client (ie in your editor) and where you start the server.

By default the Jupyter server will search for a free port starting at 8888. If 8888 is unavailable and it selects eg 8889, Jupyter Ascending won't work - as it's expecting to connect to 8888. To force Jupyter to use a specific port, start your jupyter notebook with JUPYTER_PORT=8888 JUPYTER_PORT_RETRIES=0 jupyter notebook (or whatever port you want, setting also JUPYTER_ASCENDING_EXECUTE_PORT appropriately).

Working on a remote server

Jupyter Ascending doesn't know or care if the editor and the jupyter server are on the same machine. The client is just sending requests to http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending, with the default set to http://localhost:8888/jupyter_ascending. We typically use SSH to forward the local jupyter port into the remote server, but you can set up the networking however you like, and use the environment variables to tell the client where to look for the Jupyter server.

There's fuzzy-matching logic to match the locally edited file path with the remote notebook file path (eg if the two machines have the code in a different directory), so everything should just work!

Here's an example of how you could set this up:

  1. install jupyter-ascending on both the client and the server

  2. put a copy of your project code on both the client and the server

  3. start a jupyter notebook on the server, and open a .sync.ipynb notebook

  4. set up port forwarding, e.g. with something like this (forwards local port 8888 to the remote port 8888)

    ssh -L 8888:127.0.0.1:8888 [email protected]_hostname

  5. use Jupyter Ascending clients as normal on the corresponding .sync.py file

Security Warning

The jupyter-ascending client-server connection is currently completely unauthenticated, even if you have auth enabled on the Jupyter server. This means that, if your jupyter server port is open to the internet, someone could detect that you have jupyter-ascending running, then sync and run arbitrary code on your machine. That's bad!

For the moment, we recommend only running jupyter-ascending when you're using jupyter locally, or when your jupyter server isn't open to the public internet. For example, we run Jupyter on remote servers, but keep Jupyter accessible only to localhost. Then we use a secure SSH tunnel to do port-forwarding.

Hopefully we can add proper authentication in the future. Contributions are welcome here!

How it works

  • your editor calls the jupyter ascending client library with one of a few commands:
    • sync the code to the notebook (typically on save)
    • run a cell / run all cells / other commands that should be mapped to a keyboard shortcut
  • the client library assembles a HTTP POST request and sends it to the jupyter server
  • there is a jupyter server extension which accepts HTTP POST requests at http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending.
  • the server extension matches the request filename to the proper running notebooks and forwards the command along to the notebook plugin
  • a notebook plugin receives the command, and updates the contents of the notebook or executes the requested command.
  • the notebook plugin consists of two parts - one part executes within the python process of the notebook kernel, and the other executes in javascript in the notebook's browser window. the part in python launches a little webserver in a thread, which is how it receives messages the server extension. when the webserver thread starts up, it sends a message to the server extension to "register" itself so the server extension knows where to send commands for that notebook.

Local development

To do local development (only needed if you're modifying the jupyter-ascending code):

# install dependencies
$ poetry install

# Activate the poetry env
$ poetry shell

# Installs the extension, using symlinks
$ jupyter nbextension install --py --sys-prefix --symlink jupyter_ascending

# Enables them, so it auto loads
$ jupyter nbextension enable jupyter_ascending --py --sys-prefix
$ jupyter serverextension enable jupyter_ascending --sys-prefix --py

To check that they are enabled, do something like this:

$ jupyter nbextension list
Known nbextensions:
  config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter/nbconfig
    notebook section
      jupytext/index  enabled
      - Validating: OK
      jupyter-js-widgets/extension  enabled
      - Validating: OK
      jupyter_ascending/extension  enabled
      - Validating: OK

$ jupyter serverextension list
config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter
    jupytext  enabled
    - Validating...
      jupytext 1.8.0 OK
    jupyter_ascending  enabled
    - Validating...
      jupyter_ascending 0.1.13 OK

Run tests from the root directory of this repository using python -m pytest ..

Format files with pyfixfmt. In a PyCharm file watcher, something like

python -m pyfixfmt --file-glob $FilePathRelativeToProjectRoot$ --verbose

Pushing a new version to PyPI:

  • Bump the version number in pyproject.toml and _version.py.
  • poetry build
  • poetry publish
  • git tag VERSION and git push origin VERSION

Updating dependencies:

  • Dependency constraints are in pyproject.toml. These are the constraints that will be enforced when distributing the package to end users.
  • These get locked down to specific versions of each package in poetry.lock, when you run poetry lock or poetry install for the first time. poetry.lock is only used by developers using poetry install - the goal is to have a consistent development environment for a all developers.
  • If you make a change to the dependencies in pyproject.toml, you'll want to update the lock file with poetry lock. To get only the minimal required changes, use poetry lock --no-update.
Owner
Untitled AI
We're investigating the fundamentals of learning across humans and machines in order to create more general machine intelligence.
Untitled AI
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
šŸŽ 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
git怊Beta R-CNN: Looking into Pedestrian Detection from Another Perspective怋(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Bayes-Newtonā€”A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022