Explainer for black box models that predict molecule properties

Related tags

Deep Learningexmol
Overview

Explaining why that molecule

GitHub tests paper docs PyPI version MIT license

exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help users understand why a molecule is predicted to have a property.

Install

pip install exmol

Counterfactual Generation

Our package implements the Model Agnostic Counterfactual Compounds with STONED (MACCS) to generate counterfactuals. A counterfactual can explain a prediction by showing what would have to change in the molecule to change its predicted class. Here is an eample of a counterfactual:

This package is not popular. If the package had a logo, it would be popular.

In addition to having a changed prediction, a molecular counterfactual must be similar to its base molecule as much as possible. Here is an example of a molecular counterfactual:

counterfactual demo

The counterfactual shows that if the carboxylic acid were an ester, the molecule would be active. It is up to the user to translate this set of structures into a meaningful sentence.

Usage

Let's assume you have a deep learning model my_model(s) that takes in one SMILES string and outputs a predicted binary class. To generate counterfactuals, we need to wrap our function so that it can take both SMILES and SELFIES, but it only needs to use one.

We first expand chemical space around the prediction of interest

import exmol

# mol of interest
base = 'CCCO'

samples = exmol.sample_space(base, lambda smi, sel: my_model(smi), batched=False)

Here we use a lambda to wrap our function and indicate our function can only take one SMILES string, not a list of them with batched=False. Now we select counterfactuals from that space and plot them.

cfs = exmol.cf_explain(samples)
exmol.plot_cf(cfs)

set of counterfactuals

We can also plot the space around the counterfactual. This is computed via PCA of the affinity matrix -- the similarity with the base molecule. Due to how similarity is calculated, the base is going to be the farthest from all other molecules. Thus your base should fall on the left (or right) extreme of your plot.

cfs = exmol.cf_explain(samples)
exmol.plot_space(samples, cfs)

chemical space

Each counterfactual is a Python dataclass with information allowing it to be used in your own analysis:

print(cfs[0])
Examples(
  smiles='CCOC(=O)c1ccc(N=CN(Cl)c2ccccc2)cc1',
  selfies='[C][C][O][C][Branch1_2][C][=O][C][=C][C][=C][Branch1_1][#C][N][=C][N][Branch1_1][C][Cl][C][=C][C][=C][C][=C][Ring1][Branch1_2][C][=C][Ring1][S]',
  similarity=0.8181818181818182,
  yhat=-5.459493637084961,
  index=1807,
  position=array([-6.11371691,  1.24629293]),
  is_origin=False,
  cluster=26,
  label='Counterfactual')

Chemical Space

When calling exmol.sample_space you can pass preset=<preset>, which can be one of the following:

  • 'narrow': Only one change to molecular structure, reduced set of possible bonds/elements
  • 'medium': Default. One or two changes to molecular structure, reduced set of possible bonds/elements
  • 'wide': One through five changes to molecular structure, large set of possible bonds/elements
  • 'chemed': A restrictive set where only pubchem molecules are considered. Experimental

You can also pass num_samples as a "request" for number of samples. You will typically end up with less due to degenerate molecules. See API for complete description.

SVG

Molecules are by default drawn as PNGs. If you would like to have them drawn as SVGs, call insert_svg after calling plot_space or plot_cf

import skunk
exmol.plot_cf(exps)
svg = exmol.insert_svg(exps, mol_fontsize=16)

# for Jupyter Notebook
skunk.display(svg)

# To save to file
with open('myplot.svg', 'w') as f:
    f.write(svg)

This is done with the skunk 🦨 library.

API and Docs

Read API here. You should also read the paper (see below) for a more exact description of the methods and implementation.

Citation

Please cite Wellawatte et al.

 @article{wellawatte_seshadri_white_2021,
 place={Cambridge},
 title={Model agnostic generation of counterfactual explanations for molecules},
 DOI={10.33774/chemrxiv-2021-4qkg8},
 journal={ChemRxiv},
 publisher={Cambridge Open Engage},
 author={Wellawatte, Geemi P and Seshadri, Aditi and White, Andrew D},
 year={2021}}

This content is a preprint and has not been peer-reviewed.

Comments
  • Add LIME explanations

    Add LIME explanations

    This is a big PR!

    • [x] Document LIME function
    • [x] Compute t-stats using examples that have non-zero weights
    • [x] Add plotting code for descriptors - needs SMARTS annotations for MACCS keys (166 files)
    • [x] Add plotting code for chemical space and fit
    • [x] Description in readme
    • [x] Clean up notebooks and add documentation
    • [x] Remove extra files
    • [x] Add LIME notebooks to CI?
    opened by hgandhi2411 11
  • Error while plotting counterfactuals using plot_cf()

    Error while plotting counterfactuals using plot_cf()

    plot_cf() function errors out with the following error. This behavior is also consistent across all notebooks in paper/.

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-10-b6c8ed26216e> in <module>
          1 fkw = {"figsize": (8, 6)}
          2 mpl.rc("axes", titlesize=12)
    ----> 3 exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
          4 
          5 plt.savefig("rf-simple.png", dpi=180)
    
    /gpfs/fs2/scratch/hgandhi/exmol/exmol/exmol.py in plot_cf(exps, fig, figure_kwargs, mol_size, mol_fontsize, nrows, ncols)
        682         title += f"\nf(x) = {e.yhat:.3f}"
        683         axs[i].set_title(title)
    --> 684         axs[i].imshow(np.asarray(img), gid=f"rdkit-img-{i}")
        685         axs[i].axis("off")
        686     for j in range(i, C * R):
    
    ~/.local/lib/python3.7/site-packages/matplotlib/__init__.py in inner(ax, data, *args, **kwargs)
       1359     def inner(ax, *args, data=None, **kwargs):
       1360         if data is None:
    -> 1361             return func(ax, *map(sanitize_sequence, args), **kwargs)
       1362 
       1363         bound = new_sig.bind(ax, *args, **kwargs)
    
    ~/.local/lib/python3.7/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, filternorm, filterrad, resample, url, **kwargs)
       5607                               resample=resample, **kwargs)
       5608 
    -> 5609         im.set_data(X)
       5610         im.set_alpha(alpha)
       5611         if im.get_clip_path() is None:
    
    ~/.local/lib/python3.7/site-packages/matplotlib/image.py in set_data(self, A)
        699                 not np.can_cast(self._A.dtype, float, "same_kind")):
        700             raise TypeError("Image data of dtype {} cannot be converted to "
    --> 701                             "float".format(self._A.dtype))
        702 
        703         if self._A.ndim == 3 and self._A.shape[-1] == 1:
    
    TypeError: Image data of dtype <U14622 cannot be converted to float
    
    opened by hgandhi2411 6
  • Error after installation

    Error after installation

    Hi,

    First at all, thank you for your work!. I am obtaining a problem installing your library, o better say when I do "import exmol", I obtaing one error:"No module named 'dataclasses'".

    I have installed as: pip install exmol...

    Thanks!

    opened by PARODBE 6
  • CODEX Example

    CODEX Example

    While messing around with CODEX, I noticed it wants to compute ECFP4 fingerprints using a different method and this gives slightly different similarities. @geemi725 could you double-check the ECFP4 implementation we have is correct, or is the CODEX one correct?

    image

    opened by whitead 6
  • Object has no attribute '__code__'

    Object has no attribute '__code__'

    Hi there, I noticed that sample_space does not seem to work with class instances, because they do not have a __code__ attribute:

    import exmol
    class A:
        pass
    exmol.sample_space('C', A(), batched=True)
    
    AttributeError: 'A' object has no attribute '__code__'
    

    Is there any way around this other than forcing the call to a separate function?

    opened by oiao 5
  • The module 'exmol' has no attribute 'lime_explain'

    The module 'exmol' has no attribute 'lime_explain'

    In the notebook RF-lime.ipynb, the command

    exmol.lime_explain(space, descriptor_type=descriptor_type)

    gives a error module 'exmol' has no attribute 'lime_explain'

    Please, let me know how to fix this error. Thanks.

    opened by andresilvapimentel 5
  • Easier usage of explain

    Easier usage of explain

    Working through some examples, I've noted the following things:

    1. Descriptor type should have a default - maybe MACCS since the plots will show-up
    2. Maybe we should only save SVGs, rather than return unless prompted
    3. We should do string comparison for descriptor types using lowercase strings, so that classic and Classic and ecfp are valid.
    4. We probably shouldn't save without a filename - it is unexpected
    opened by whitead 4
  • Allow using custom list of molecules

    Allow using custom list of molecules

    Hello @whitead, this is very nice package !

    I found the new chemed option very useful and thought extending it to any list of molecule would make sense.

    Here is the main change to the API:

    explanation = exmol.sample_space(
          "CCCC",
          model,
          preset="custom", #use custom preset
          batched=False,
          data=data, # provide list of smiles or molecules
    )
    

    Let me know if this PR make sense.

    opened by maclandrol 4
  • Target molecule frequently on the edge of sample space visualization

    Target molecule frequently on the edge of sample space visualization

    In your example provided in the code, the target molecule is on the edge of the sampled distribution (in the PCA plot). I also find this happens very frequently with my experiments on my model. I think this suggests that the sampling produces molecules that are not evenly distributed around the target. I just want to verify that this is a property of the STONED sampling algorithm, and not an artifact of the visualization code (which it does not seem to be). I've attached an example of my own, for both "narrow" and "medium" presets.

    preset="narrow", nmols=10

    explain_narrow_0 05_10

    preset="medium", nmols=10

    explain_medium_0 05_10

    opened by adamoyoung 3
  • Sanitizing SMILES removes chirality information

    Sanitizing SMILES removes chirality information

    On this line of sample_space(), chirality information of origin_smiles is removed. The output is then unsuitable as input to a chirality-aware ML model, e.g. to distinguish L vs. D amino acids which are important in models of binding affinity. Could the option to skip this sanitization step be provided to the user?

    PS: Great code base and beautiful visualizations! We're finding it very useful in explaining our Gaussian Process models. The future of SAR ←→ ML looks exciting.

    opened by tianyu-lu 2
  • Release 0.5.0 on pypi

    Release 0.5.0 on pypi

    Are you planning to release 0.5.0 on pypi? I am maintaining the conda package of exmol and I would like to bump it to 0.5.0. See https://github.com/conda-forge/exmol-feedstock

    Thanks!

    opened by hadim 2
  • run_STONED couldn't generate SMILES after 30 minutes

    run_STONED couldn't generate SMILES after 30 minutes

    For certain SMILES, run_STONED() failed to generate after running for so long. So far, one SMILES known to cause such issue is

    [Na+].[Na+].[Na+].[Na+].[Na+].[O-][S](=O)(=O)OCC[S](=O)(=O)c1cccc(Nc2nc(Cl)nc(Nc3cc(cc4C=C(\C(=N/Nc5ccc6c(cccc6[S]([O-])(=O)=O)c5[S]([O-])(=O)=O)C(=O)c34)[S]([O-])(=O)=O)[S]([O-])(=O)=O)n2)c1

    Here is how I use the function: exmol.run_stoned(smiles, num_samples=10, max_mutations=1).

    opened by qcampbel 2
Releases(v2.2.1)
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022