This tutorial repository is to introduce the functionality of KGTK to first-time users

Overview

Welcome to the KGTK notebook tutorial

The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyper-relational knowledge graphs (KGs), designed for ease of use, scalability, and speed. The tutorial consists of several notebooks that demonstrate how to perform network analysis, graph profiling, knowledge enrichment, and embedding computation over a portion of the Wikidata knowledge graph. The tutorial notebooks can be found in the tutorial folder. All notebooks require minimum configuration and can be run locally or in Google Colab in a matter of a few minutes. The input data for the notebooks is stored in the datasets folder. Basic understanding of knowledge graphs is sufficient for this tutorial.

This repository has been created for the purpose of the KGTK tutorial presented at ISWC 2021. For more information on this tutorial, see our website.

Notebooks

  1. 01-kgtk-introduction.ipynb introduction to kgtk and kypher.
  2. 02-kg-profiling.ipynb performs profiling of a Wikidata subgraph, by computing deep statistics of its classes, instances, and properties.
  3. 03-kg-graph-embeddings.ipynb computes graph embeddings of a Wikidata subgraph using kgtk, demonstrates how to use these embeddings for similarity estimation, and visualizes them.
  4. 04-kg-enrichment-with-csv.ipynb shows how structured data from IMDb can be integrated into a subset of Wikidata.
  5. 05-kg-enrichment-with-lod.ipynb shows how LOD graphs like Getty Vocabulary can be used to enrich Wikidata by using kgtk operations.
  6. 06-kg-network-analysis.ipynb analyzes the family network of Arnold Schwarzenegger (Q2685) in Wikidata by using KGTK operations.
  7. 07-kg-constraint-validation.ipynb demonstrates how to do constraint validation on one wikidata property.

Running the notebooks in Google Colab

List of steps required to be able to run the ISI Google colab Notebooks.

Make a copy of the notebooks to your Google Drive.

The following tutorial notebooks are available to run in Google Colab

  1. 01-kgtk-introduction.ipynb
  2. 02-kg-profiling.ipynb
  3. 03-kg-graph-embeddings.ipynb
  4. 04-kg-enrichment-with-csv.ipynb
  5. 05-kg-enrichment-with-lod.ipynb
  6. 06-kg-network-analysis.ipynb
  7. 07-kg-constraint-validation.ipynb
  8. kgtk-browser.ipynb (experimental)

Click on a link, it'll take you to the Google Colab notebook. These are readonly notebook links.

Click on Save a copy in Drive from the File menu as shown.

Save a Copy

This will create a copy of the notebook in your Google Drive.

Install kgtk

Run the first cell to install kgtk.

If you see this warning,

Author

click on Run anyway to continue

You'll see an error after the install finishes,

Restart Runtime

This is because of a conflict in Google Colab's python environment. You have to click on the Restart Runtime button.

You do not have to install kgtk again.

In some notebooks, there are a few more installation cells, in case you see the same error as above, please click on Restart Runtime

Run the cells in the notebook

Now, simply run all the cells. The notebook should run successfully.

Google Colab Caveats

  • The colab VM and python environment is ephemeral. The VM will reset after a while, all the installed libraries and files produced will be lost.
  • Google Colab File IO. Download / Upload files to Google Colab
  • You can connect a google drive to the colab notebook to read from and save to.
  • Users can run the same colab notebook by sharing it with a link. This can have unwanted complications in case multiple people run the same cell at the same time.

Contact

Owner
USC ISI I2
USC ISI I2
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
LBK 35 Dec 26, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022