SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

Overview

SSD: Single Shot MultiBox Detector

Introduction

Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2. These models are based on original model (SSD-VGG16) described in the paper SSD: Single Shot MultiBox Detector. This implementation supports mixed precision training.


An example of SSD Resnet50's output.

Motivation

Why this implementation exists while there are many ssd implementations already ?

I believe that many of you when seeing this implementation have this question in your mind. Indeed there are already many implementations for SSD and its variants in Pytorch. However most of them are either:

  • over-complicated
  • modularized
  • many improvements added
  • not evaluated/visualized

The above-mentioned points make learner hard to understand how original ssd looks like. Hence, I re-implement this well-known model, focusing on simplicity. I believe this implementation is suitable for ML/DL users from different levels, especially beginners. In compared to model described in the paper, there are some minor changes (e.g. backbone), but other parts follow paper strictly.

Datasets

Dataset Classes #Train images #Validation images
COCO2017 80 118k 5k
  • COCO: Download the coco images and annotations from coco website. Make sure to put the files as the following structure (The root folder names coco):
    coco
    ├── annotations
    │   ├── instances_train2017.json
    │   └── instances_val2017.json
    │── train2017
    └── val2017 
    

Docker

For being convenient, I provide Dockerfile which could be used for running training as well as test phases

Assume that docker image's name is ssd. You already created an empty folder name trained_models for storing trained weights. Then you clone this repository and cd into it.

Build:

docker build --network=host -t ssd .

Run:

docker run --rm -it -v path/to/your/coco:/coco -v path/to/trained_models:/trained_models --ipc=host --network=host ssd

How to use my code

Assume that at this step, you either already installed necessary libraries or you are inside docker container

Now, with my code, you can:

  • Train your model by running python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE train.py --model [ssd|ssdlite] --batch-size [int] [--amp]. You could stop or resume your training process whenever you want. For example, if you stop your training process after 10 epochs, the next time you run the training script, your training process will continue from epoch 10. mAP evaluation, by default, will be run at the end of each epoch. Note: By specifying --amp flag, your model will be trained with mixed precision (FP32 and FP16) instead of full precision (FP32) by default. Mixed precision training reduces gpu usage and therefore allows you train your model with bigger batch size while sacrificing negligible accuracy. More infomation could be found at apex and pytorch.
  • Test your model for COCO dataset by running python test_dataset.py --pretrained_model path/to/trained_model
  • Test your model for image by running python test_image.py --pretrained_model path/to/trained_model --input path/to/input/file --output path/to/output/file
  • Test your model for video by running python test_video.py --pretrained_model path/to/trained_model --input path/to/input/file --output path/to/output/file

You could download my trained weight for SSD-Resnet50 at link

Experiments

I trained my models by using NVIDIA RTX 2080. Below is mAP evaluation for SSD-Resnet50 trained for 54 epochs on COCO val2017 dataset


SSD-Resnet50 evaluation.


SSD-Resnet50 tensorboard for training loss curve and validation mAP curve.

Results

Some predictions are shown below:

References

Owner
Viet Nguyen
M.Sc. in Computer Science, majoring in Artificial Intelligence and Robotics. Interest topics: Deep Learning in NLP and Computer Vision. Reinforcement Learning.
Viet Nguyen
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022