Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Overview

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction

This is the code for the paper Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction by Daniel Gehrig*, Michelle Rüegg*, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scaramuzza:

You can find a pdf of the paper here and the project homepage here. If you use this work in an academic context, please cite the following publication:

@Article{RAL21Gehrig,
  author        = {Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hidalgo-Carrio and Davide Scaramuzza},
  title         = {Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction},
  journal       = {{IEEE} Robotic and Automation Letters. (RA-L)},
  url           = {http://rpg.ifi.uzh.ch/docs/RAL21_Gehrig.pdf},
  year          = 2021
}

If you use the event-camera plugin go to CARLA, please cite the following publication:

@Article{Hidalgo20threedv,
  author        = {Javier Hidalgo-Carrio, Daniel Gehrig and Davide Scaramuzza},
  title         = {Learning Monocular Dense Depth from Events},
  journal       = {{IEEE} International Conference on 3D Vision.(3DV)},
  url           = {http://rpg.ifi.uzh.ch/docs/3DV20_Hidalgo.pdf},
  year          = 2020
}

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create --name RAMNET python=3.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tb-nightly kornia scikit-learn scikit-image opencv-python

Branches

To run experiments on Event Scape plese switch to the main branch

git checkout main

To run experiments on real data from MVSEC, switch to asynchronous_irregular_real_data.

git checkout asynchronous_irregular_real_data

Checkpoints

The checkpoints for RAM-Net can be found here:

EventScape

This work uses the EventScape dataset which can be downloaded here:

Video to Events

Qualitative results on MVSEC

Here the qualitative results of RAM-Net against state-of-the-art is shown. The video shows MegaDepth, E2Depth and RAM-Net in the upper row, image and event inputs and depth ground truth in the lower row.

Video to Events

Using RAM-Net

A detailed description on how to run the code can be found in the README in the folder /RAM_Net. Another README can be found in /RAM_Net/configs, it describes the meaning of the different parameters in the configs.

Owner
Robotics and Perception Group
Robotics and Perception Group
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022