GAN JAX - A toy project to generate images from GANs with JAX

Related tags

Deep LearningGANJax
Overview

GAN JAX - A toy project to generate images from GANs with JAX

This project aims to bring the power of JAX, a Python framework developped by Google and DeepMind to train Generative Adversarial Networks for images generation.

JAX

JAX logo

JAX is a framework developed by Deep-Mind (Google) that allows to build machine learning models in a more powerful (XLA compilation) and flexible way than its counterpart Tensorflow, using a framework almost entirely based on the nd.array of numpy (but stored on the GPU, or TPU if available). It also provides new utilities for gradient computation (per sample, jacobian with backward propagation and forward-propagation, hessian...) as well as a better seed system (for reproducibility) and a tool to batch complicated operations automatically and efficiently.

Github link: https://github.com/google/jax

GAN

GAN diagram

Generative adversarial networks (GANs) are algorithmic architectures that use two neural networks, pitting one against the other (thus the adversarial) in order to generate new, synthetic instances of data that can pass for real data. They are used widely in image generation, video generation and voice generation. GANs were introduced in a paper by Ian Goodfellow and other researchers at the University of Montreal, including Yoshua Bengio, in 2014. Referring to GANs, Facebook’s AI research director Yann LeCun called adversarial training the most interesting idea in the last 10 years in ML. (source)

Original paper: https://arxiv.org/abs/1406.2661

Some ideas have improved the training of the GANs by the years. For example:

Deep Convolution GAN (DCGAN) paper: https://arxiv.org/abs/1511.06434

Progressive Growing GAN (ProGAN) paper: https://arxiv.org/abs/1710.10196

The goal of this project is to implement these ideas in JAX framework.

Installation

You can install JAX following the instruction on JAX - Installation

It is strongly recommended to run JAX on Linux with CUDA available (Windows has no stable support yet). In this case you can install JAX using the following command:

pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Then you can install Tensorflow to benefit from tf.data.Dataset to handle the data and the pre-installed dataset. However, Tensorfow allocate memory of the GPU on use (which is not optimal for running calculation with JAX). Therefore, you should install Tensorflow on the CPU instead of the GPU. Visit this site Tensorflow - Installation with pip to install the CPU-only version of Tensorflow 2 depending on your OS and your Python version.

Exemple with Linux and Python 3.9:

pip install tensorflow -f https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl

Then you can install the other librairies from requirements.txt. It will install Haiku and Optax, two usefull add-on libraries to implement and optimize machine learning models with JAX.

pip install -r requirements.txt

Install CelebA dataset (optional)

To use the CelebA dataset, you need to download the dataset from Kaggle and install the images in the folder img_align_celeba/ in data/CelebA/images. It is recommended to download the dataset from this source because the faces are already cropped.

Note: the other datasets will be automatically installed with keras or tensorflow-datasets.

Quick Start

You can test a pretrained GAN model by using apps/test.py. It will download the model from pretrained models (in pre_trained/) and generate pictures. You can change the GAN to test by changing the path in the script.

You can also train your own GAN from scratch with apps/train.py. To change the parameters of the training, you can change the configs in the script. You can also change the dataset or the type of GAN by changing the imports (there is only one workd to change for each).

Example to train a GAN in celeba (64x64):

from utils.data import load_images_celeba_64 as load_images

To train a DCGAN:

from gan.dcgan import DCGAN as GAN

Then you can implement your own GAN and train/test them in your own dataset (by overriding the appropriate functions, check the examples in the repository).

Some results of pre-trained models

- Deep Convolution GAN

  • On MNIST:

DCGAN Cifar10

  • On Cifar10:

DCGAN Cifar10

  • On CelebA (64x64):

DCGAN CelebA-64

- Progressive Growing GAN

  • On MNIST:

  • On Cifar10:

  • On CelebA (64x64):

  • On CelebA (128x128):

Owner
Valentin Goldité
Student at CentraleSupelec (top french Engineer School) specialized in machine learning (Computer Vision, NLP, Audio, RL, Time Analysis).
Valentin Goldité
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022