Multi-View Radar Semantic Segmentation

Related tags

Deep LearningMVRSS
Overview

Multi-View Radar Semantic Segmentation

Paper

teaser_schema

Multi-View Radar Semantic Segmentation, ICCV 2021.

Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Florence Tupin, Julien Rebut

This repository groups the implemetations of the MV-Net and TMVA-Net architectures proposed in the paper of Ouaknine et al..

The models are trained and tested on the CARRADA dataset.

The CARRADA dataset is available on Arthur Ouaknine's personal web page at this link: https://arthurouaknine.github.io/codeanddata/carrada.

If you find this code useful for your research, please cite our paper:

@misc{ouaknine2021multiview,
      title={Multi-View Radar Semantic Segmentation},
      author={Arthur Ouaknine and Alasdair Newson and Patrick Pérez and Florence Tupin and Julien Rebut},
      year={2021},
      eprint={2103.16214},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation with Docker

It is strongly recommanded to use Docker with the provided Dockerfile containing all the dependencies.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Create the Docker image:
$ cd MVRSS/
$ docker build . -t "mvrss:Dockerfile"

Note: The CARRADA dataset used for train and test is considered as already downloaded by default. If it is not the case, you can uncomment the corresponding command lines in the Dockerfile or follow the guidelines of the dedicated repository.

  1. Run a container and join an interactive session. Note that the option -v /host_path:/local_path is used to mount a volume (corresponding to a shared memory space) between the host machine and the Docker container and to avoid copying data (logs and datasets). You will be able to run the code on this session:
$ docker run -d --ipc=host -it -v /host_machine_path/datasets:/home/datasets_local -v /host_machine_path/logs:/home/logs --name mvrss --gpus all mvrss:Dockerfile sleep infinity
$ docker exec -it mvrss bash

Installation without Docker

You can either use Docker with the provided Dockerfile containing all the dependencies, or follow these steps.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Install this repository using pip:
$ cd MVRSS/
$ pip install -e .

With this, you can edit the MVRSS code on the fly and import function and classes of MVRSS in other project as well.

  1. Install all the dependencies using pip and conda, please take a look at the Dockerfile for the list and versions of the dependencies.

  2. Optional. To uninstall this package, run:

$ pip uninstall MVRSS

You can take a look at the Dockerfile if you are uncertain about steps to install this project.

Running the code

In any case, it is mandatory to specify beforehand both the path where the CARRADA dataset is located and the path to store the logs and models. Example: I put the Carrada folder in /home/datasets_local, the path I should specify is /home/datasets_local. The same way if I store my logs in /home/logs. Please run the following command lines while adapting the paths to your settings:

$ cd MVRSS/mvrss/utils/
$ python set_paths.py --carrada /home/datasets_local --logs /home/logs

Training

In order to train a model, a JSON configuration file should be set. The configuration file corresponding to the selected parameters to train the TMVA-Net architecture is provided here: MVRSS/mvrss/config_files/tmvanet.json. To train the TMVA-Net architecture, please run the following command lines:

$ cd MVRSS/mvrss/
$ python train.py --cfg config_files/tmvanet.json

If you want to train the MV-Net architecture (baseline), please use the corresponding configuration file: mvnet.json.

Testing

To test a recorded model, you should specify the path to the configuration file recorded in your log folder during training. Per example, if you want to test a model and your log path has been set to /home/logs, you should specify the following path: /home/logs/carrada/tmvanet/name_of_the_model/config.json. This way, you should execute the following command lines:

$ cd MVRSS/mvrss/
$ python test.py --cfg /home/logs/carrada/tmvanet/name_of_the_model/config.json

Note: the current implementation of this script will generate qualitative results in your log folder. You can disable this behavior by setting get_quali=False in the parameters of the predict() method of the Tester() class.

Acknowledgements

License

The MVRSS repo is released under the Apache 2.0 license.

You might also like...
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Comments
  • Sensor set up

    Sensor set up

    Hi, in the paper section 2.1 Automotive radar sensing, you say that -

    With conventional FMCW radars the RAD tensor is usually not available as it is too computing intensive to estimate.

    so what is difference between conventional FMCW and others FMCW radar?

    In addition, what CARRADA dataset camera and radar sensor setup? and the network cost time (ms) is possible to on-road online?

    Thanks you, hope you can give me some advice.

    opened by enting8696 1
  • metrics calculation on some frames without foreground pixels

    metrics calculation on some frames without foreground pixels

    Hi, I have a question about the calculation of some metrics including IoU, DICE, precision, and recall. In your codes I think you add all frames' confusion matrix together to have the metrics you want. But I found that the dataset contains some frames without any foreground pixels, for example:

    Screen Shot 2021-07-16 at 9 53 27 PM

    The frame without foreground pixel will give a 0 value for the above metrics. So I am afraid the performance of the model is actually underestimated. I wonder if it is more reasonable to exclude frames without the foreground pixel?

    opened by james20141606 1
  • test results.

    test results.

    Thanks for your great work. When I use your pretrained weight in test.py. I can only get mIoU 58.2 in test_result.json file and 12 percentage points worse than the metrics in the result.json file. Can you help me with the confusion?

    opened by sutiankang 0
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022