The VeriNet toolkit for verification of neural networks

Related tags

Deep LearningVeriNet
Overview

VeriNet

The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks. VeriNet won second place overall and was the most performing among toolkits not using GPUs in the 2nd international verification of neural networks competition. VeriNet is devloped at the Verification of Autonomous Systems (VAS) group, Imperial College London.

Relevant Publications.

VeriNet is developed as part of the following publications:

Efficient Neural Network Verification via Adaptive Refinement and Adversarial Search

DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis

This version of VeriNet subsumes the VeriNet toolkit publised in the first paper and the DeepSplit toolkit published in the second paper.

Installation:

All dependencies can be installed via Pipenv.

VeriNet depends on the Xpress solver, which can solve smaller problems without a license; however, larger problems (networks with more than approximately 5000 nodes) require a license. Free academic licenses can be obtained at: https://content.fico.com/l/517101/2018-06-10/3fpbf

We recommend installing the developer dependencies for some extra optimisations during the loading of onnx models. These can be installed by running pipenv with the --dev option: $pipenv install --dev.

Usage:

Models:

VeriNet supports loading models in onnx format or custom models created with the VeriNetNN class, a subclass of torch.nn.module.

Loading onnx models:

Onnx models can be loaded as follows:

from verinet.parsers.onnx_parser import ONNXParser

onnx_parser = ONNXParser(onnx_model_path, input_names=("x",), transpose_fc_weights=False, use_64bit=False)
model = onnx_parser.to_pytorch()
model.eval()

The first argument is the path of the onnx file; input_names should be a tuple containing the input-variable name as stored in the onnx model; if transpose_fc_weights is true the weight matrices of fully-connected layers are transposed; if use_64bit is true the parameters of the model are stored as torch.DoubleTensors instead of torch.FloatTensors.

Custom models:

The following is a simple example of a VeriNetNN model with two inputs, one FC layer, one ReLU layer and 2 outputs:

import torch.nn as nn
from verinet.neural_networks.verinet_nn import VeriNetNN, VeriNetNNNode

nodes = [VeriNetNNNode(idx=0, op=nn.Identity(), connections_from=None, connections_to=[1]),
         VeriNetNNNode(idx=1, op=nn.nn.Linear(2, 2)(), connections_from=[0], connections_to=[2]),
         VeriNetNNNode(idx=2, op=nn.ReLU(), connections_from=[1], connections_to=[3]),
         VeriNetNNNode(idx=3, op=nn.Identity(), connections_from=[2], connections_to=None)]

model = VeriNetNN(nodes)

VeriNetNN takes as input a list of nodes (note that 'nodes' here do not correspond to neurons, each node may have multiple neurons) where each node has the following parameters:

  • idx: A unique node-index sorted topologically wrt the connections.
  • op: The operation performed by the node, all operations defined in verinet/neural_networks/custom_layers.py as well as nn.ReLU, nn.Sigmoid, nn.Tanh, nn.Linear, nn.Conv2d, nn.AvgPool2d, nn.Identity, nn.Reshape, nn.Transpose and nn.Flatten are supported.
  • connections_from: A list of which nodes' outputs are used as input in this node. Note that more than one output in a single node (residual connections) is only support for nodes with the AddDynamic op as defined in custom_layers.py.
  • connections_to: A list of which nodes' input depend on this node's output corresponding to connections_from.

The first and last layer should be nn.Identity nodes. BatchNorm2d and MaxPool2d operations can be implemented by saving the model to onnx and reloading as the onnx parser automatically attempts to convert these to equivalent Conv2d and ReLU layers.

Verification Objectives:

VeriNet supports verification objectives in the VNN-COMP'21 vnnlib format and custom objectives.

Vnnlib:

VeriNet supports vnnlib files formated as described in the following discussion: https://github.com/stanleybak/vnncomp2021/issues/2. The files can be loaded as follows:

from verinet.parsers.vnnlib_parser import VNNLIBParser

vnnlib_parser = VNNLIBParser(vnnlib_path)
objectives = vnnlib_parser.get_objectives_from_vnnlib(model, input_shape)

The vnnlib_path parameter should be the path of the vnnlib file, model is the VeriNetNN model as discussed above while the input shape is a tuple describing the shape of the models input without batch-dimension (e.g. (784, ) for flattened MNIST (1, 28, 28) for MNIST images and (3, 32, 32) for CIFAR-10 Images).

Custom objectives:

The following is an example of how a custom verification objective for classification problems can be encoded (correct output larger than all other outputs):

from verinet.verification.objective import Objective

objective = Objective(input_bounds, output_size=10, model=model)
out_vars = objective.output_vars
for j in range(objective.output_size):
    if j != correct_output:
        # noinspection PyTypeChecker
        objective.add_constraints(out_vars[j] <= out_vars[correct_output])

Here input bounds is an array of shape (*network_input_shape, 2) where network_input_shape is the input shape of the network (withut batch dimension) and the last dimension contains the lower bounds at position 0 and upper bounds at position 1.

Note that the verification objective encodes what it means for the network to be Safe/Robust. And-type constraints can be encoded by calling objective.add_constraints for each and-clause, while or-type constraints can be encoded with '|' (e.g. (out_vars[0] < 1) | (out_vars[0] < out_vars[1])).

Verification:

After defining the model and objective as described above, verification is performed by using the VeriNet class as follows:

from verinet.verification.verinet import VeriNet

solver = VeriNet(use_gpu=True, max_procs=None)
status = solver.verify(objective=objective, timeout=3600)

The parameters of VeriNet, use_gpu and max_procs, determines whether to use the GPU and the maximum number of processes (max_procs = None automatically determines the number of processes depending on the cores available).

The parameters in solver.verify correspond to the objective as discussed above and the timeout in seconds. Note that is recommended to keep solver alive instead of creating a new object every call to reduce overhead.

After each verification run the number of branches explored and maximum depth reached are stored in solver.branches_explored and solver.max_depth, respectively. If the objective is determined to be unsafe/not-robust, a counter example is stored in solver.counter_example.

At the end of each run, status will be either Status.Safe, Status.Unsafe, Status.Undecided or Status.Underflow. Safe means that the property is robust, Unsafe that a counter example was found, undecided that the solver timed-out and underflow that an error was encountered, most likely due to floating point precision.

Advanced usage:

Environment variables:

The .env file contains some environment variables that are automatically enabled if pipenv is used, if pipenv is not used make sure to export these variables.

Config file:

The config file in verinet/util/config.py contains several advanced settings. Of particular interest are the following:

  • PRECISION: (32 or 64) The floating point precision used in SIP. Note that this does not affect the precision of the model itself, which can be adjusted in the ONNXParser as discussed above.
  • MAX_ESTIMATED_MEM_USAGE: The maximum estimated memory usage acceptable in SIP. Can be reduced to reduce the memory requirements at the cost of computational performance.
  • USE_SSIP and STORE_SSIP_BOUNDS: Performs a pre-processing using a lower cost SIP-variant. Should be enabled if the input-dimensionality is significantly smaller than the size of the network (e.g. less than 50 input nodes with more than 10k Relu nodes).

Authors:

Patrick Henriksen: [email protected]
Alessio Lomuscio.

Owner
Verification of Autonomous Systems Research Group; Department of Computing; Imperial College London; London UK
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021