GSoC'2021 | TensorFlow implementation of Wav2Vec2

Overview

GSoC

This repository presents an implementation of the Wav2Vec2 model [1] in TensorFlow 2.0 as a part of Google Summer of Code.

For a quick demo, please check out this. Final report of the project can be found here.

Notebooks

The repository comes with shiny Colab Notebooks. Below you can find a list of them. Spin them up and don't forget to have fun!

Notebook Description
Open In Colab This notebook gives you a template to fine-tune a pre-trained Wav2Vec2 SavedModel
Open In Colab This notebook demonstrates conversion of TF Wav2Vec2 model to ONNX and compares the latency of ONNX exported model & TF model on CPU
Open In Colab This notebook demonstrates Wav2Vec2 evaluation (without any padding) on LibriSpeech data
Open In Colab This notebook demonstrates Wav2Vec2 SavedModel evaluation (with constant padding upto 246000 length) on LibriSpeech data
Open In Colab This notebook shows a small demo of how to use Wav2Vec2 for inference for ASR task

Checkpoints

Below is a summary of checkpoints obtained during the project:

🤗 Hub Checkpoint TFHub SavedModel Description
gsoc-wav2vec2 wav2vec2 This checkpoint is TensorFlow's equivalent of pre-trained Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
gsoc-wav2vec2-960h wav2vec2-960h This checkpoint is TensorFlow's equivalent of fine-tuned Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
finetuned-wav2vec2-960h - This checkpoint is obtained by fine-tuning Wav2Vec2 model on 960h of LibriSpeech dataset during my GSoC tenure. You can reproduce training by running main.py on TPU v3-8

To know more about the process of obtaining the first two checkpoints, please check out this section and to know about the process of obtaining the last checkpoint, please check out this section.

Using this Repository

Wav2Vec2 model from this repository can be installed using the pip command:

# this will install the wav2vec2 package
pip3 install git+https://github.com/vasudevgupta7/[email protected]

You can use the fine-tuned checkpoints (from 🤗 Hub) like this:

from wav2vec2 import Wav2Vec2ForCTC, Wav2Vec2Config

config = Wav2Vec2Config()
model = Wav2Vec2ForCTC(config)
# now use this model like any other TF model

# incase you are interested in already trained model, use `.from_pretrained` method
model_id = "finetuned-wav2vec2-960h"
model = Wav2Vec2ForCTC.from_pretrained(model_id)

Additionally, you can use the SavedModel from TFHub like this:

import tensorflow_hub as hub

model_url = "https://tfhub.dev/vasudevgupta7/wav2vec2-960h/1"
model = hub.KerasLayer(model_url)

# use this `model`, just like any other TF SavedModel

Please checkout the notebooks referred to in this repository for more information on how to use the Wav2Vec2 model.

Reproducing this project

Setting Up

# install & setup TensorFlow first
pip3 install tensorflow

# install other requirements of this project using the following command:
pip3 install -qr requirements.txt
sudo apt-get install libsndfile1-dev

# switch to code directory for further steps
cd src

For using TPUs, it's important to store model weights and datasets in the GCS bucket so that TPU can access them directly from there. Hence we will create 2 GCS buckets - one for checkpointing and the other for storing LibriSpeech tfrecords.

# these bucket names will be required to run the training script later
export DATA_BUCKET_NAME="gsoc-librispeech-us"
export CKPT_BUCKET_NAME="gsoc-checkpoints-us"

# create GCS buckets
gsutil mb gs://${DATA_BUCKET_NAME}
gsutil mb gs://${CKPT_BUCKET_NAME}

Preparing dataset

Now we will download the LibriSpeech dataset from the official website & convert them into tfrecords using make_tfrecords.py. Finally, we will export all the tfrecords to the GCS bucket.

# possible values are `dev-clean`, `train-clean-100`, `train-clean-360`, `train-other-500`, `test-clean`
# you will have to follow same steps for all the configurations (specified above).
export DATA_SPLIT=dev-clean

wget https://www.openslr.org/resources/12/${DATA_SPLIT}.tar.gz
tar -xf ${DATA_SPLIT}.tar.gz

python3 make_tfrecords.py --data_dir LibriSpeech/${DATA_SPLIT} -d ${DATA_SPLIT} -n 50

# transfer tfrecords to GCS bucket
gsutil cp -r ${DATA_SPLIT} gs://<DATA_BUCKET_NAME>/${DATA_SPLIT}

Now your GCS bucket (DATA_BUCKET_NAME) should look like this:

.
|- ${DATA_SPLIT}
    |- ${DATA_SPLIT}-0.tfrecord
    |- ${DATA_SPLIT}-1.tfrecord
    .
    .

Follow the above steps for all other data splits. You just need to change the DATA_SPLIT environment variable.

Model training

Now since everything is installed and GCS buckets are configured, we just need to run one command to initiate training.

Note: Following commands assumes that you have exported DATA_BUCKET_NAME & CKPT_BUCKET_NAME environment variables already.

The following command will fine-tune the wav2vec2 model on single/multiple GPUs or Colab/Kaggle TPUs:

python3 main.py

For training on Cloud TPUs, run the following command:

# export `TPU_NAME` environment variable first
# this flag will ensure that your VM connects to the specified TPUs & TPUs become visible to TensorFlow
TPU_NAME=<tpu-name> python3 main.py

Running Conversion script

Original PyTorch checkpoints (from Facebook) can be converted using the conversion script available in this repository.

python3 convert_torch_to_tf.py \
--hf_model_id facebook/wav2vec2-base \ # HuggingFace Hub ID of the model you want to convert
--with_lm_head # Whether to use `Wav2Vec2ForCTC` or `Wav2Vec2Model` from this repository

Running tests

# first install `torch` & `transformers`
pip3 install torch transformers

# run this from the root of this repository
pytest -sv tests

Acknowledgement

References

[1] Baevski, Alexei, et al. “Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.” ArXiv:2006.11477 [Cs, Eess], Oct. 2020. arXiv.org, http://arxiv.org/abs/2006.11477.

End Notes

Please create an issue in case you encountered any issues while using this project. Don't forget to 🌟 this repository if you liked my work.

Owner
Vasudev Gupta
Open Source @huggingface, @tensorflow | Interested in Speech & Text
Vasudev Gupta
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Malware-Related Sentence Classification

Malware-Related Sentence Classification This repo contains the code for the ICTAI 2021 paper "Enrichment of Features for Malware-Related Sentence Clas

Chau Nguyen 1 Mar 26, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022