NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

Overview

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Python Package Docs

Paper: https://arxiv.org/abs/2102.06171.pdf

Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Do star this repository if it helps your work!

Note: See this comment for a generic implementation for any optimizer as a temporary reference for anyone who needs it.

Installation

Install from PyPi:

pip3 install nfnets-pytorch

or install the latest code using:

pip3 install git+https://github.com/vballoli/nfnets-pytorch

Usage

WSConv2d

Use WSConv2d and WSConvTranspose2d like any other torch.nn.Conv2d or torch.nn.ConvTranspose2d modules.

import torch
from torch import nn
from nfnets import WSConv2d

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

conv_t = nn.ConvTranspose2d(3,6,3)
w_conv_t = WSConvTranspose2d(3,6,3)

SGD - Adaptive Gradient Clipping

Similarly, use SGD_AGC like torch.optim.SGD

import torch
from torch import nn, optim
from nfnets import WSConv2d, SGD_AGC

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = SGD_AGC(conv.parameters(), 1e-3)

Generic AGC

import torch
from torch import nn, optim
from nfnets import WSConv2d
from nfnets.agc import AGC # Needs testing

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = AGC(conv.parameters(), optim) # Needs testing

Using it within any PyTorch model

import torch
from torch import nn
from torchvision.models import resnet18

from nfnets import replace_conv

model = resnet18()
replace_conv(model)

Docs

Find the docs at readthedocs

TODO

  • WSConv2d
  • SGD - Adaptive Gradient Clipping
  • Function to automatically replace Convolutions in any module with WSConv2d
  • Documentation
  • Generic AGC wrapper.(See this comment for a reference implementation) (Needs testing for now)
  • WSConvTranspose2d
  • NFNets
  • NF-ResNets

Cite Original Work

To cite the original paper, use:

@article{brock2021high,
  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},
  year={2021}
}
Comments
  • optim_agc.step() this instruction is raising  AttributeError: 'NoneType' object has no attribute 'ndim'

    optim_agc.step() this instruction is raising AttributeError: 'NoneType' object has no attribute 'ndim'

    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    import numpy as np
    import torchvision
    from torchvision import *
    from torch.utils.data import Dataset, DataLoader
    from nfnets import replace_conv,SGD_AGC
    
    net = models.resnet50(pretrained=True)
    replace_conv(net)
    net = net.cuda() if device else net
    num_ftrs = net.fc.in_features
    net.fc = nn.Linear(num_ftrs, 13)
    net.fc = net.fc.cuda() if use_cuda else net.fc
    ct = 0
    for name, child in net.named_children():
        ct += 1
        if ct < 8:
            for name2, params in child.named_parameters():
                params.requires_grad = False
    
    criterion = nn.CrossEntropyLoss()
    optim_agc = SGD_AGC(net.parameters(), 1e-3,momentum=0.9)
    
    n_epochs = 5
    print_every = 10
    valid_loss_min = np.Inf
    val_loss = []
    val_acc = []
    train_loss = []
    train_acc = []
    total_step = len(train_dataloader)
    
    for epoch in range(1, n_epochs+1):
        running_loss = 0.0
        correct = 0
        total=0
        print(f'Epoch {epoch}\n')
        for batch_idx, (data_, target_) in enumerate(train_dataloader):
            data_, target_ = data_.to(device), target_.to(device)
            optim_agc.zero_grad()
            outputs = net(data_)
            loss = criterion(outputs, target_)
            loss.backward()
            optim_agc.step()
            running_loss += loss.item()
            _,pred = torch.max(outputs, dim=1)
            correct += torch.sum(pred==target_).item()
            total += target_.size(0)
            if (batch_idx) % 20 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch, n_epochs, batch_idx, total_step, loss.item()))
        train_acc.append(100 * correct / total)
        train_loss.append(running_loss/total_step)
    		
    

    Traceback (most recent call last):

    File "image_product_classifier.py", line 74, in optim_agc.step() File "/home/sachin_mohan/venv/lib/python3.6/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context return func(*args, **kwargs) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/sgd_agc.py", line 105, in step grad_norm = unitwise_norm(p.grad) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/utils.py", line 27, in unitwise_norm if x.ndim <= 1: AttributeError: 'NoneType' object has no attribute 'ndim'``

    bug Fixed 
    opened by sachin22225 13
  • Is it pytorch compatibility??

    Is it pytorch compatibility??

    I use the code, however, I got the following error.

    At first, I got the following;

    base.py", line 262, in __init__
        dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode)
    TypeError: __init__() got an unexpected keyword argument 'padding_mode'
    

    When I remove padding_mode=padding_mode, I got another error, as presented below

    utils.py", line 23, in replace_conv
        setattr(module, name, torch.nn.Identity())
    AttributeError: module 'torch.nn' has no attribute 'Identity'
    

    How to solve this?

    question 
    opened by Choneke 11
  • Example in readme does not work

    Example in readme does not work

    Describe the bug Running either replace_conv this code form the readme on the front page: model = vgg16() replace_conv(model, WSConv2d) # This repo's original implementation replace_conv(model, ScaledStdConv2d) # From timm

    Results in this error:

      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 25, in replace_conv
        replace_conv(mod, conv_class)
      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 18, in replace_conv
        setattr(module, name, conv_class(target_mod.in_channels, target_mod.out_channels, target_mod.kernel_size,
      File "/opt/conda/lib/python3.8/site-packages/nfnets/base.py", line 262, in __init__
        super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 386, in __init__
        super(Conv2d, self).__init__(
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 108, in __init__
        if bias:
    RuntimeError: Boolean value of Tensor with more than one value is ambiguous
    
    enhancement WIP will be delayed 
    opened by RandomString123 4
  • Implement `param_groups` for AGC

    Implement `param_groups` for AGC

    Describe the bug Using LambdaLR, it will call len(optimizer.param_groups), but this is not implemented for AGC.

    To Reproduce

    model = torch.nn.Conv1d(10,20,4)
    optimizer = optim.AdamW(model.parameters())
    optimizer_agc = AGC(model.parameters(),optimizer)
    
    lambda1 = lambda iteration: 0.05*iteration
    scheduler_warmup = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1)
    scheduler_warmup_agc = torch.optim.lr_scheduler.LambdaLR(optimizer_agc,lr_lambda=lambda1)
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-58-f68dd026a6de> in <module>
    ----> 1 scheduler_warmup2 = torch.optim.lr_scheduler.LambdaLR(optimizer2,lr_lambda=lambda1)
    
    /gpfs/alpine/proj-shared/fus131/conda-envs/torch1.5.0v2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py in __init__(self, optimizer, lr_lambda, last_epoch)
        180
        181         if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
    --> 182             self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
        183         else:
        184             if len(lr_lambda) != len(optimizer.param_groups):
    
    AttributeError: 'AGC' object has no attribute 'param_groups'
    

    Pytorch v1.5.0

    bug 
    opened by rmchurch 4
  • torch.max doesn't check for tensors being on different devices.

    torch.max doesn't check for tensors being on different devices.

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce Steps to reproduce the behavior:

    1. Go to example and instantiate a resnet18
    2. Send model to torch.device('cuda)
    3. Define a tensor on the gpu
    4. Call model.forward()
    5. RuntimeError: iter.device(arg).is_cuda() INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/cuda/Loops.cuh":94, please report a bug to PyTorch.

    Expected behavior Regular output

    Screenshots If applicable, add screenshots to help explain your problem.

    See here

    My Solution:

    Its hacky obviously but it works. Simply replace https://github.com/vballoli/nfnets-pytorch/blob/867860eebffcc70fb87a389d770cfd4a73c6b30c/nfnets/base.py#L22 with scale = torch.rsqrt(torch.max(var * fan_in, torch.tensor(eps).to(var.device))) * self.gain.view_as(var).to(var.device)

    Fixed 
    opened by bfialkoff 4
  • AGC without modifying the optimizer

    AGC without modifying the optimizer

    Hello,

    Is there a way to apply AGC externally without modifying the optimizer code?

    I am using optimizers from torch_optimizer package and that would be good.

    Fixed 
    opened by kayuksel 4
  • Add WSConv1d

    Add WSConv1d

    I just did a minor modification on WSConv2d to implement a WS version Conv1d. It works fine with my own model which is a time series model using Transformer + Conv1d, and it removes the overfitting issue in my model. Thanks

    opened by shi27feng 3
  • Model is None

    Model is None

    Hi @vballoli, It seems to have a bug in the code of AGC:

    if model is not None:
        assert ignore_agc not in [None, []], "You must specify ignore_agc for AGC to ignore fc-like(or other) layers"
        names = [name for name, module in model.named_modules()]
    
        for module_name in ignore_agc:
            if module_name not in names:
                raise ModuleNotFoundError("Module name {} not found in the model".format(module_name))
            params = [{"params": list(module.parameters())} for name,
                              module in model.named_modules() if name not in ignore_agc]
    else:
        params = [{"params": list(module.parameters())} for name,
                           module in model.named_modules()]
    

    When model is None then the else part of the code cannot get name and module from model.named_modules().

    Thanks

    bug 
    opened by shi27feng 2
  • AGC condition

    AGC condition

    Hello! What's the reason you changed the AGC condition from trigger = grad_norm > max_norm as in original paper and code?

    https://github.com/vballoli/nfnets-pytorch/blob/1513cea2c39e09189f4883ad90c2337a8fb9f9ed/nfnets/agc.py#L71

    commit: 4b03658f16d5746d45ea27711f5b33551a472e00

    opened by haigh1510 2
  • Conv layer from timm work better

    Conv layer from timm work better

    resnet18 with replace this layer learn better, but still need two times more epochs for same result than original on CIFAR10

    class ScaledStdConv2d(nn.Conv2d):
        """Conv2d layer with Scaled Weight Standardization.
        Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` -
            https://arxiv.org/abs/2101.08692
        """
    
        def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
                     bias=True, gain=True, gamma=1.0, eps=1e-5, use_layernorm=False):
            if padding is None:
                padding = get_padding(kernel_size, stride, dilation)
            super().__init__(
                in_channels, out_channels, kernel_size, stride=stride,
                padding=padding, dilation=dilation, groups=groups, bias=bias)
            self.gain = nn.Parameter(torch.ones(self.out_channels, 1, 1, 1)) if gain else None
            self.scale = gamma * self.weight[0].numel() ** -0.5  # gamma * 1 / sqrt(fan-in)
            self.eps = eps ** 2 if use_layernorm else eps
            self.use_layernorm = use_layernorm  # experimental, slightly faster/less GPU memory use
    
        def get_weight(self):
            if self.use_layernorm:
                weight = self.scale * F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
            else:
                std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
                weight = self.scale * (self.weight - mean) / (std + self.eps)
            if self.gain is not None:
                weight = weight * self.gain
            return weight
    
        def forward(self, x):
            return F.conv2d(x, self.get_weight(), self.bias, self.stride, self.padding, self.dilation, self.groups)
    
    enhancement help wanted Discussion 
    opened by attashe 2
  • Adaptive gradient clipping shouldn't be used in the final classifier layer

    Adaptive gradient clipping shouldn't be used in the final classifier layer

    Describe the bug In the paper it is mentioned that AGC is NOT used in the final layer. image

    Expected behavior It will be great AGC can be disabled for final layer. Adding a check here may be sufficient to get the desired behavior. Please let me know if i am misunderstanding something. Thanks.

    opened by sidml 2
Releases(0.1.3)
  • 0.0.6(Feb 17, 2021)

  • 0.0.4(Feb 15, 2021)

  • 0.0.3(Feb 15, 2021)

  • 0.0.2(Feb 15, 2021)

  • 0.0.1(Feb 14, 2021)

    PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

    Paper: https://arxiv.org/abs/2102.06171.pdf Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

    Installation

    pip3 install git+https://github.com/vballoli/nfnets-pytorch

    Usage

    WSConv2d

    Use WSConv2d like any other torch.nn.Conv2d.

    import torch
    from torch import nn
    from nfnets import WSConv2d
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    

    SGD - Adaptive Gradient Clipping

    Similarly, use SGD_AGC like torch.optim.SGD

    import torch
    from torch import nn, optim
    from nfnets import WSConv2d, SGD_AGC
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    
    optim = optim.SGD(conv.parameters(), 1e-3)
    optim_agc = SGD_AGC(conv.parameters(), 1e-3)
    

    Using it within any PyTorch model

    import torch
    from torch import nn
    from torchvision.models import resnet18
    
    from nfnets import replace_conv
    
    model = resnet18()
    replace_conv(model)
    

    Docs

    Find the docs at readthedocs

    TODO

    • [x] WSConv2d
    • [x] SGD - Adaptive Gradient Clipping
    • [x] Function to automatically replace Convolutions in any module with WSConv2d
    • [x] Documentation
    • [ ] NFNets
    • [ ] NF-ResNets

    Cite Original Work

    To cite the original paper, use:

    @article{brock2021high,
      author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
      title={High-Performance Large-Scale Image Recognition Without Normalization},
      journal={arXiv preprint arXiv:},
      year={2021}
    }
    
    Source code(tar.gz)
    Source code(zip)
Owner
Vaibhav Balloli
ML, RL, Hardware Systems.
Vaibhav Balloli
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022