Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Overview


Release Website Documentation Discord


Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create, store, manipulate, search and analyse vectors alongside json documents to power applications such as neural search, semantic search, personalised recommendations recommendations etc.


Features

  • Multimedia Data Vectorisation: Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning)
  • Document Orientated Store: Store your vectors alongside documents without having to do a db lookup for metadata about the vectors.
  • Vector Similarity Search: Enable searching of vectors and rich multimedia with vector similarity search. The backbone of many popular A.I use cases like reverse image search, recommendations, personalisation, etc.
  • Hybrid Search: There are scenarios where vector search is not as effective as traditional search, e.g. searching for skus. Vector AI lets you combine vector search with all the features of traditional search such as filtering, fuzzy search, keyword matching to create an even more powerful search.
  • Multi-Model Weighted Search: Our Vector search is highly customisable and you can peform searches with multiple vectors from multiple models and give them different weightings.
  • Vector Operations: Flexible search with out of the box operations on vectors. e.g. mean, median, sum, etc.
  • Aggregation: All the traditional aggregation you'd expect. e.g. group by mean, pivot tables, etc
  • Clustering: Interpret your vectors and data by allocating them to buckets and get statistics about these different buckets based on data you provide.
  • Vector Analytics: Get better understanding of your vectors by using out-of-the-box practical vector analytics, giving you better understanding of the quality of your vectors.

Quick Terminologies

  • Models/Encoders (aka. Embedders) ~ Turns data into vectors e.g. Word2Vec turns words into vector
  • Vector Similarity Search (aka. Nearest Neighbor Search, Distance Search)
  • Collection (aka. Index, Table) ~ a collection is made up of multiple documents
  • Documents (aka. Json, Item, Dictionary, Row) ~ a document can contain vectors, text and links to videos/images/audio.

QuickStart

Install via pip! Compatible with any OS.

pip install vectorai

If you require the nightly version due to on-going improvements, you can install the nightly version using:

pip install vectorai-nightly

Note: while the nightly version will still pass automated tests, it may not be stable.

Check out our quickstart notebook on how to make a text/image/audio search engine in 5 minutes: quickstart.ipynb

from vectorai import ViClient, request_api_key

api_key = request_api_key(username=<username>, email=<email>, description=<description>, referral_code="github_referred")

vi_client = ViClient(username=username, api_key=api_key)

from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username, api_key)

documents = [
    {
        '_id': 0,
        'color': 'red'
    },
    {
        '_id': 1,
        'color': 'blue'
    }
]

# Insert the data
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})

# Search the data
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)

# Get Recommendations
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)

Access Powerful Vector Analytics

Vector AI has powerful visualisations to allow you to analyse your vectors as easily as possible - in 1 line of code.

vi_client.plot_dimensionality_reduced_vectors(documents, 
    point_label='title', 
    dim_reduction_field='_dr_ivis', 
    cluster_field='centroid_title', cluster_label='centroid_title')

View Dimensionality-Reduced Vectors

vi_client.plot_2d_cosine_similarity(
    documents,
    documents[0:2],
    vector_fields=['use_vector_'],
    label='name',
    anchor_document=documents[0]
)

Compare vectors and their search performance on your documents easily! 1D plot cosine simlarity


Why Vector AI compared to other Nearest Neighbor implementations?

  • Production Ready: Our API is fully managed and can scale to power hundreds of millions of searches a day. Even at millions of searches it is blazing fast through edge caching, GPU utilisation and software optimisation so you never have to worry about scaling your infrastructure as your use case scales.
  • Simple to use. Quick to get started.: One of our core design principles is that we focus on how people can get started on using Vector AI as quickly as possible, whilst ensuring there is still a tonne of functionality and customisability options.
  • Richer understanding of your vectors and their properties: Our library is designed to allow people to do more than just obtain nearest neighbors, but to actually experiment, analyse, interpret and improve on them the moment the data added to the index.
  • Store vector data with ease: The document-orientated nature for Vector AI allows users to label, filter search and understand their vectors as much as possible.
  • Real time access to data: Vector AI data is accessible in real time, as soon as the data is inserted it is searchable straight away. No need to wait hours to build an index.
  • Framework agnostic: We are never going to force a specific framework on Vector AI. If you have a framework of choice, you can use it - as long as your documents are JSON-serializable!

Using VectorHub Models

VectorHub is Vector AI's main model repository. Models from VectorHub are built with scikit-learn interfaces and all have examples of Vector AI integration. If you are looking to experiment with new off-the-shelf models, we recommend giving VectorHub models a go - all of them have been tested on Colab and are able to be used in as little as 3 lines of code!

Schema Rules for documents (BYO Vectors and IDs)

Ensure that any vector fields contain a '_vector_' in its name and that any ID fields have the name '_id'.

For example:

example_item = {
    '_id': 'James',
    'skills_vector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

The following will not be recognised as ID columns or vector columns.

example_item = {
    'name_id': 'James',
    'skillsvector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

How does this differ from the VectorAI API?

The Python SDK is designed to provide a way for Pythonistas to unlock the power of VectorAI in as few lines as code as possible. It exposes all the elements of an API through our open-sourced automation tool and is the main way our data scientists and engineers interact with the VectorAI engine for quick prototyping before developers utilise API requests.

Note: The VectorAI SDK is built on the development server which can sometimes cause errors. However, this is important to ensure that users are able to access the most cutting-edge features as required. If you run into such issues, we recommend creating a GitHub Issue if it is non-urgent, but feel free to ping the Discord channel for more urgent enquiries.


Building Products with Vector AI

Creating a multi-language AI fashion assistant: https://fashionfiesta.me | Blog

Demo

Do share with us any blogs or websites you create with Vector AI!

You might also like...
The end-to-end platform for building voice products at scale
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Comments
  • Accessing Discord

    Accessing Discord

    Hi Vector AI Team!

    I'm trying to access the Discord invite link mentioned in the readme: https://discord.gg/CbwUxyD But getting an "invalid invite link".

    I'm writing a new blog post covering the many neural search frameworks, in spirit of my blog post on Vector DBs: https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696

    If that's okay, I'd like to ask a couple of questions on the inner workings of the framework and some of its features.

    Thanks,

    Dmitry

    opened by DmitryKey 0
  • Same search results for searching very different images.

    Same search results for searching very different images.

    Using the unsplash-images collection: https://playground.getvectorai.com/collections/?collection=unsplash-images

    result for: vi_client.search_image('unsplash-images', image_url, ['image_url_vector_']) with image_url as: https://www.rover.com/blog/wp-content/uploads/2020/06/siberian-husky-4735878_1920.jpg https://davidkerrphotography.co.nz/wp-content/uploads/2016/10/Slide01.jpg

    identical result for both:

    {'count': 17506,
     'results': [{'_clusters_': {},
                  '_id': 'tLUgvVaCQnY',
                  '_search_score': 0.6311334,
                  'dictionary_label_1': 'wineglasses',
                  'dictionary_label_2': 'delftware',
                  'image_url': 'https://images.unsplash.com/photo-1540735242080-bc0ad0cdcd1e?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.205446',
                  'likes': 150005},
                 {'_clusters_': {},
                  '_id': 'wVMuNOSt5KY',
                  '_search_score': 0.6278121000000001,
                  'dictionary_label_2': 'bootstrapping',
                  'image_url': 'https://images.unsplash.com/photo-1556912743-90a361c19b16?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.018132',
                  'likes': 173693},
                 {'_clusters_': {},
                  '_id': 'kkBXGVE9k-8',
                  '_search_score': 0.626989,
                  'dictionary_label_1': 'occupant',
                  'dictionary_label_2': 'catabolized',
                  'image_url': 'https://images.unsplash.com/photo-1526529516337-f40ddc5532e2?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.129598',
                  'likes': 627490},
                 {'_clusters_': {},
                  '_id': 'pLshzlb5yOA',
                  '_search_score': 0.6268415,
                  'dictionary_label_2': 'wood',
                  'image_url': 'https://images.unsplash.com/photo-1582459208380-f99d357adf33?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.096761',
                  'likes': 173756},
                 {'_clusters_': {},
                  '_id': 'sHmW616civc',
                  '_search_score': 0.6268100999999999,
                  'dictionary_label_2': 'trail',
                  'image_url': 'https://images.unsplash.com/photo-1556674524-65bf99573bef?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.000302',
                  'likes': 682592},
                 {'_clusters_': {},
                  '_id': 'VoTqMJLLSI8',
                  '_search_score': 0.6235797000000001,
                  'dictionary_label_1': 'trays',
                  'dictionary_label_2': 'dishware',
                  'image_url': 'https://images.unsplash.com/photo-1569272559969-2a9275513966?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.202763',
                  'likes': 172006},
                 {'_clusters_': {},
                  '_id': 'XcWKh-GF69M',
                  '_search_score': 0.6210401999999999,
                  'dictionary_label_2': 'obliging',
                  'image_url': 'https://images.unsplash.com/photo-1581280227715-56d3062138a9?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.517206',
                  'likes': 678324},
                 {'_clusters_': {},
                  '_id': 'b2_pVdk4lGI',
                  '_search_score': 0.6187004,
                  'dictionary_label_2': 'jukebox',
                  'image_url': 'https://images.unsplash.com/photo-1568967906094-1d0acfbf0676?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.509971',
                  'likes': 138088},
                 {'_clusters_': {},
                  '_id': '22HltbHJbPI',
                  '_search_score': 0.6182232000000001,
                  'dictionary_label_1': 'shoreline',
                  'dictionary_label_2': 'buckeens',
                  'image_url': 'https://images.unsplash.com/photo-1541514467948-60ec8a24e84f?w=300&q=80',
                  'insert_date_': '2021-02-25T09:44:25.156647',
                  'likes': 758805},
                 {'_clusters_': {},
                  '_id': 'uM3pEsEkPHA',
                  '_search_score': 0.6179558,
                  'dictionary_label_2': 'dewclaw',
                  'image_url': 'https://images.unsplash.com/photo-1572725364984-c2a074c6740c?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.111128',
                  'likes': 655907}]}
    
    opened by elliotsayes 4
  • Bulid type-safe assertive decorator

    Bulid type-safe assertive decorator

    With Python's type-safety is difficult but it can be implemented through smart use of Python decorators. An interesting example can be seen below:

    import itertools as it
    
    @parametrized
    def types(f, *types):
        def rep(*args):
            for a, t, n in zip(args, types, it.count()):
                if type(a) is not t:
                    raise TypeError('Value %d has not type %s. %s instead' %
                        (n, t, type(a))
                    )
            return f(*args)
        return rep
    
    @types(str, int)  # arg1 is str, arg2 is int
    def string_multiply(text, times):
        return text * times
    
    print(string_multiply('hello', 3))    # Prints hellohellohello
    print(string_multiply(3, 3))          # Fails miserably with TypeError
    
    # From: https://stackoverflow.com/questions/5929107/decorators-with-parameters
    
    enhancement 
    opened by boba-and-beer 0
Releases(v0.2.5)
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021