Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Overview


Release Website Documentation Discord


Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create, store, manipulate, search and analyse vectors alongside json documents to power applications such as neural search, semantic search, personalised recommendations recommendations etc.


Features

  • Multimedia Data Vectorisation: Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning)
  • Document Orientated Store: Store your vectors alongside documents without having to do a db lookup for metadata about the vectors.
  • Vector Similarity Search: Enable searching of vectors and rich multimedia with vector similarity search. The backbone of many popular A.I use cases like reverse image search, recommendations, personalisation, etc.
  • Hybrid Search: There are scenarios where vector search is not as effective as traditional search, e.g. searching for skus. Vector AI lets you combine vector search with all the features of traditional search such as filtering, fuzzy search, keyword matching to create an even more powerful search.
  • Multi-Model Weighted Search: Our Vector search is highly customisable and you can peform searches with multiple vectors from multiple models and give them different weightings.
  • Vector Operations: Flexible search with out of the box operations on vectors. e.g. mean, median, sum, etc.
  • Aggregation: All the traditional aggregation you'd expect. e.g. group by mean, pivot tables, etc
  • Clustering: Interpret your vectors and data by allocating them to buckets and get statistics about these different buckets based on data you provide.
  • Vector Analytics: Get better understanding of your vectors by using out-of-the-box practical vector analytics, giving you better understanding of the quality of your vectors.

Quick Terminologies

  • Models/Encoders (aka. Embedders) ~ Turns data into vectors e.g. Word2Vec turns words into vector
  • Vector Similarity Search (aka. Nearest Neighbor Search, Distance Search)
  • Collection (aka. Index, Table) ~ a collection is made up of multiple documents
  • Documents (aka. Json, Item, Dictionary, Row) ~ a document can contain vectors, text and links to videos/images/audio.

QuickStart

Install via pip! Compatible with any OS.

pip install vectorai

If you require the nightly version due to on-going improvements, you can install the nightly version using:

pip install vectorai-nightly

Note: while the nightly version will still pass automated tests, it may not be stable.

Check out our quickstart notebook on how to make a text/image/audio search engine in 5 minutes: quickstart.ipynb

from vectorai import ViClient, request_api_key

api_key = request_api_key(username=<username>, email=<email>, description=<description>, referral_code="github_referred")

vi_client = ViClient(username=username, api_key=api_key)

from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username, api_key)

documents = [
    {
        '_id': 0,
        'color': 'red'
    },
    {
        '_id': 1,
        'color': 'blue'
    }
]

# Insert the data
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})

# Search the data
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)

# Get Recommendations
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)

Access Powerful Vector Analytics

Vector AI has powerful visualisations to allow you to analyse your vectors as easily as possible - in 1 line of code.

vi_client.plot_dimensionality_reduced_vectors(documents, 
    point_label='title', 
    dim_reduction_field='_dr_ivis', 
    cluster_field='centroid_title', cluster_label='centroid_title')

View Dimensionality-Reduced Vectors

vi_client.plot_2d_cosine_similarity(
    documents,
    documents[0:2],
    vector_fields=['use_vector_'],
    label='name',
    anchor_document=documents[0]
)

Compare vectors and their search performance on your documents easily! 1D plot cosine simlarity


Why Vector AI compared to other Nearest Neighbor implementations?

  • Production Ready: Our API is fully managed and can scale to power hundreds of millions of searches a day. Even at millions of searches it is blazing fast through edge caching, GPU utilisation and software optimisation so you never have to worry about scaling your infrastructure as your use case scales.
  • Simple to use. Quick to get started.: One of our core design principles is that we focus on how people can get started on using Vector AI as quickly as possible, whilst ensuring there is still a tonne of functionality and customisability options.
  • Richer understanding of your vectors and their properties: Our library is designed to allow people to do more than just obtain nearest neighbors, but to actually experiment, analyse, interpret and improve on them the moment the data added to the index.
  • Store vector data with ease: The document-orientated nature for Vector AI allows users to label, filter search and understand their vectors as much as possible.
  • Real time access to data: Vector AI data is accessible in real time, as soon as the data is inserted it is searchable straight away. No need to wait hours to build an index.
  • Framework agnostic: We are never going to force a specific framework on Vector AI. If you have a framework of choice, you can use it - as long as your documents are JSON-serializable!

Using VectorHub Models

VectorHub is Vector AI's main model repository. Models from VectorHub are built with scikit-learn interfaces and all have examples of Vector AI integration. If you are looking to experiment with new off-the-shelf models, we recommend giving VectorHub models a go - all of them have been tested on Colab and are able to be used in as little as 3 lines of code!

Schema Rules for documents (BYO Vectors and IDs)

Ensure that any vector fields contain a '_vector_' in its name and that any ID fields have the name '_id'.

For example:

example_item = {
    '_id': 'James',
    'skills_vector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

The following will not be recognised as ID columns or vector columns.

example_item = {
    'name_id': 'James',
    'skillsvector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

How does this differ from the VectorAI API?

The Python SDK is designed to provide a way for Pythonistas to unlock the power of VectorAI in as few lines as code as possible. It exposes all the elements of an API through our open-sourced automation tool and is the main way our data scientists and engineers interact with the VectorAI engine for quick prototyping before developers utilise API requests.

Note: The VectorAI SDK is built on the development server which can sometimes cause errors. However, this is important to ensure that users are able to access the most cutting-edge features as required. If you run into such issues, we recommend creating a GitHub Issue if it is non-urgent, but feel free to ping the Discord channel for more urgent enquiries.


Building Products with Vector AI

Creating a multi-language AI fashion assistant: https://fashionfiesta.me | Blog

Demo

Do share with us any blogs or websites you create with Vector AI!

You might also like...
The end-to-end platform for building voice products at scale
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Comments
  • Accessing Discord

    Accessing Discord

    Hi Vector AI Team!

    I'm trying to access the Discord invite link mentioned in the readme: https://discord.gg/CbwUxyD But getting an "invalid invite link".

    I'm writing a new blog post covering the many neural search frameworks, in spirit of my blog post on Vector DBs: https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696

    If that's okay, I'd like to ask a couple of questions on the inner workings of the framework and some of its features.

    Thanks,

    Dmitry

    opened by DmitryKey 0
  • Same search results for searching very different images.

    Same search results for searching very different images.

    Using the unsplash-images collection: https://playground.getvectorai.com/collections/?collection=unsplash-images

    result for: vi_client.search_image('unsplash-images', image_url, ['image_url_vector_']) with image_url as: https://www.rover.com/blog/wp-content/uploads/2020/06/siberian-husky-4735878_1920.jpg https://davidkerrphotography.co.nz/wp-content/uploads/2016/10/Slide01.jpg

    identical result for both:

    {'count': 17506,
     'results': [{'_clusters_': {},
                  '_id': 'tLUgvVaCQnY',
                  '_search_score': 0.6311334,
                  'dictionary_label_1': 'wineglasses',
                  'dictionary_label_2': 'delftware',
                  'image_url': 'https://images.unsplash.com/photo-1540735242080-bc0ad0cdcd1e?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.205446',
                  'likes': 150005},
                 {'_clusters_': {},
                  '_id': 'wVMuNOSt5KY',
                  '_search_score': 0.6278121000000001,
                  'dictionary_label_2': 'bootstrapping',
                  'image_url': 'https://images.unsplash.com/photo-1556912743-90a361c19b16?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.018132',
                  'likes': 173693},
                 {'_clusters_': {},
                  '_id': 'kkBXGVE9k-8',
                  '_search_score': 0.626989,
                  'dictionary_label_1': 'occupant',
                  'dictionary_label_2': 'catabolized',
                  'image_url': 'https://images.unsplash.com/photo-1526529516337-f40ddc5532e2?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.129598',
                  'likes': 627490},
                 {'_clusters_': {},
                  '_id': 'pLshzlb5yOA',
                  '_search_score': 0.6268415,
                  'dictionary_label_2': 'wood',
                  'image_url': 'https://images.unsplash.com/photo-1582459208380-f99d357adf33?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.096761',
                  'likes': 173756},
                 {'_clusters_': {},
                  '_id': 'sHmW616civc',
                  '_search_score': 0.6268100999999999,
                  'dictionary_label_2': 'trail',
                  'image_url': 'https://images.unsplash.com/photo-1556674524-65bf99573bef?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.000302',
                  'likes': 682592},
                 {'_clusters_': {},
                  '_id': 'VoTqMJLLSI8',
                  '_search_score': 0.6235797000000001,
                  'dictionary_label_1': 'trays',
                  'dictionary_label_2': 'dishware',
                  'image_url': 'https://images.unsplash.com/photo-1569272559969-2a9275513966?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.202763',
                  'likes': 172006},
                 {'_clusters_': {},
                  '_id': 'XcWKh-GF69M',
                  '_search_score': 0.6210401999999999,
                  'dictionary_label_2': 'obliging',
                  'image_url': 'https://images.unsplash.com/photo-1581280227715-56d3062138a9?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.517206',
                  'likes': 678324},
                 {'_clusters_': {},
                  '_id': 'b2_pVdk4lGI',
                  '_search_score': 0.6187004,
                  'dictionary_label_2': 'jukebox',
                  'image_url': 'https://images.unsplash.com/photo-1568967906094-1d0acfbf0676?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.509971',
                  'likes': 138088},
                 {'_clusters_': {},
                  '_id': '22HltbHJbPI',
                  '_search_score': 0.6182232000000001,
                  'dictionary_label_1': 'shoreline',
                  'dictionary_label_2': 'buckeens',
                  'image_url': 'https://images.unsplash.com/photo-1541514467948-60ec8a24e84f?w=300&q=80',
                  'insert_date_': '2021-02-25T09:44:25.156647',
                  'likes': 758805},
                 {'_clusters_': {},
                  '_id': 'uM3pEsEkPHA',
                  '_search_score': 0.6179558,
                  'dictionary_label_2': 'dewclaw',
                  'image_url': 'https://images.unsplash.com/photo-1572725364984-c2a074c6740c?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.111128',
                  'likes': 655907}]}
    
    opened by elliotsayes 4
  • Bulid type-safe assertive decorator

    Bulid type-safe assertive decorator

    With Python's type-safety is difficult but it can be implemented through smart use of Python decorators. An interesting example can be seen below:

    import itertools as it
    
    @parametrized
    def types(f, *types):
        def rep(*args):
            for a, t, n in zip(args, types, it.count()):
                if type(a) is not t:
                    raise TypeError('Value %d has not type %s. %s instead' %
                        (n, t, type(a))
                    )
            return f(*args)
        return rep
    
    @types(str, int)  # arg1 is str, arg2 is int
    def string_multiply(text, times):
        return text * times
    
    print(string_multiply('hello', 3))    # Prints hellohellohello
    print(string_multiply(3, 3))          # Fails miserably with TypeError
    
    # From: https://stackoverflow.com/questions/5929107/decorators-with-parameters
    
    enhancement 
    opened by boba-and-beer 0
Releases(v0.2.5)
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022