Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Overview

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution with consistent and accurate localization. It features several algorithmic innovations that increase speed, accuracy, and robustness of pose estimation in perceptually-challenging environments and has been extensively tested on aerial and legged robots.

This work was part of NASA JPL Team CoSTAR's research and development efforts for the DARPA Subterranean Challenge, in which DLO was the primary state estimation component for our fleet of autonomous aerial vehicles.


drawing drawing

drawing

Instructions

DLO requires an input point cloud of type sensor_msgs::PointCloud2 with an optional IMU input of type sensor_msgs::Imu. Note that although IMU data is not required, it can be used for initial gravity alignment and will help with point cloud registration.

Dependencies

Our system has been tested extensively on both Ubuntu 18.04 Bionic with ROS Melodic and Ubuntu 20.04 Focal with ROS Noetic, although other versions may work. The following configuration with required dependencies has been verified to be compatible:

  • Ubuntu 18.04 or 20.04
  • ROS Melodic or Noetic (roscpp, std_msgs, sensor_msgs, geometry_msgs, pcl_ros)
  • C++ 14
  • CMake >= 3.16.3
  • OpenMP >= 4.5
  • Point Cloud Library >= 1.10.0
  • Eigen >= 3.3.7

Installing the binaries from Aptitude should work though:

sudo apt install libomp-dev libpcl-dev libeigen3-dev 

Compiling

Create a catkin workspace, clone the direct_lidar_odometry repository into the src folder, and compile via the catkin_tools package (or catkin_make if preferred):

mkdir ws && cd ws && mkdir src && catkin init && cd src
git clone https://github.com/vectr-ucla/direct_lidar_odometry.git
catkin build

Execution

After sourcing the workspace, launch the DLO odometry and mapping ROS nodes via:

roslaunch direct_lidar_odometry dlo.launch \
  pointcloud_topic:=/robot/velodyne_points \
  imu_topic:=/robot/vn100/imu

Make sure to edit the pointcloud_topic and imu_topic input arguments with your specific topics. If IMU is not being used, set the dlo/imu ROS param to false in cfg/dlo.yaml. However, if IMU data is available, please allow DLO to calibrate and gravity align for three seconds before moving. Note that the current implementation assumes that LiDAR and IMU coordinate frames coincide, so please make sure that the sensors are physically mounted near each other.

Test Data

For your convenience, we provide example test data here (9 minutes, ~4.2GB). To run, first launch DLO (with default point cloud and IMU topics) via:

roslaunch direct_lidar_odometry dlo.launch

In a separate terminal session, play back the downloaded bag:

rosbag play dlo_test.bag

drawing

Citation

If you found this work useful, please cite our manuscript:

@article{chen2021direct,
  title={Direct LiDAR Odometry: Fast Localization with Dense Point Clouds},
  author={Chen, Kenny and Lopez, Brett T and Agha-mohammadi, Ali-akbar and Mehta, Ankur},
  journal={arXiv preprint arXiv:2110.00605},
  year={2021}
}

Acknowledgements

We thank the authors of the FastGICP and NanoFLANN open-source packages:

  • Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno, “Voxelized GICP for Fast and Accurate 3D Point Cloud Registration,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 11 054–11 059.
  • Jose Luis Blanco and Pranjal Kumar Rai, “NanoFLANN: a C++ Header-Only Fork of FLANN, A Library for Nearest Neighbor (NN) with KD-Trees,” https://github.com/jlblancoc/nanoflann, 2014.

License

This work is licensed under the terms of the MIT license.


drawing drawing

drawing drawing

Comments
  • Coordinate system conversion

    Coordinate system conversion

    Hi, thanks for your great work. I used my lidar and imu to record the data set and run it in DLO. The following figure is the map generated by the algorithm. I found that IMU drift is very serious. Is this related to coordinate system transformation? How can I set up and configure files to improve this situation? d0724d53975aa58f749b1abfa692456 3ae5711ad4dc74f03c683af98bc7db9

    opened by HomieRegina 15
  • HI, I use the nanoicp to location, but it cann`t work

    HI, I use the nanoicp to location, but it cann`t work

    Thanks for your work, I want to use nanoicp to location, it cann`t work right, but I use the pcl Gicp, it can work, so, there is anything i need to do?

    opened by tust13018211 10
  • Map generation

    Map generation

    Hi, How is the map generated? What algorithm is used? Can we upload a pcd map of the environment and then apply dlo just for localisation? I assumed dlo as a localisation algorithm, but it seems to take in the point cloud data from the bag file and generate a map on its own.

    opened by Srichitra-S 9
  • gicp speed

    gicp speed

    I run source code each scan's gicp process just cost 2-3 ms, when i run my own code use gicp library it cost 100-200ms. Both Input cloud's size almost same, which setting options may cause this phenomenon?

    opened by yst1 8
  • how to localize on a given pcd map?

    how to localize on a given pcd map?

    i have a trouble understanding how to localise on a given 3d pcd map, can anyone explain the steps

    i have a pcd map which i can load into rviz, and i have lidar-points and imu data, then how to use this package for localization?

    opened by srinivasrama 6
  • jacobian

    jacobian

    Hello author, I want to derive the jacobian in the code. I see we use global perturbation to update. When i try this, i meet this problem to look for your help. image When using Woodbury matrix identity it seems to make the formula more complicated, so i'm stuck to look for your help. Thanks for your help in advance!

    Best regards Xiaoliang jiao

    opened by narutojxl 6
  • the transformation between your lidar and imu?

    the transformation between your lidar and imu?

    I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to run your program. But I failed. I think my transformation between imu and lidar is different from yours. So could you tell your true transformation between imu and lidar. the following pitcure is my configuration: 453670779 Thank you very much!

    opened by nonlinear1 6
  • Conversion of lidar and IMU coordinate system

    Conversion of lidar and IMU coordinate system

    Hi! I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to record bags. And here is the part of the map I built with your algorithm. Because the coordinate systems of IMU and lidar are not consistent in the physical direction, this has affected the construction of the two-layer environment. Could you please tell me how to convert IMU and lidar coordinate system? 图片

    opened by HomieRegina 4
  • some trivial questions

    some trivial questions

    Hello authors, I have some trivial questions to look for your help. Thanks for your help.

    opened by narutojxl 4
  • Coordinate Frame

    Coordinate Frame

    Hi,

    Thank you for sharing this great work.

    I've set of problem such as defining the coordinate system of the odometry . Which coordinate frame do you use for odometry NED or BODY. I thought you use NED coordinate frame so that I expected when I move Lidar + IMU to the North direction, x should be positive increased but it has not been stable behaviour. I also moved the system to the East direction it should be caused positive increase on y axis but same problem. I think you use BODY frame or something different coordinate frame for odometry.

    I wonder also how do you send odometry information to the autopilot of drone. I prefered mavros and selected the related odometry ros topic and send them without change so I saw the odometry message in the autopilot but when odometry receive to the autopilot of drone it looks like x and y exchanged in autopilot even they are not exchanged odometry output of direct lidar odometry.

    Summary of the Question is that which coordinate frame do you use for odometry ? How can I set up the odometry frame to NED? x and y are negative decreased when I move lidar+imu to the North and the East respectively. and Z looks like 180 reversed. Should I multiply x and y with minus or apply rotation matrix to fix negative decreasing x, y odometry ?

    How can I ensure that autopilot and your odometry coordinate plane are in the same coordinate plane ?

    opened by danieldive 3
  • How to correct point cloud caused by motion?

    How to correct point cloud caused by motion?

    Hi, thank you for your great work about DLO. I have a question. When the robot is moving fast, the lidar point cloud will generate distortion due to movement, which will cause negative impact on the construction of the map. So how did DLO deal with this problem?

    opened by JACKLiuDay 2
Releases(v1.4.2)
Owner
VECTR at UCLA
Verifiable & Control-Theoretic Robotics Laboratory
VECTR at UCLA
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022