Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Overview

Emotion and Theme Recognition in Music

The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021 (results).

Requirements

  • python >= 3.7
  • pip install -r requirements.txt in a virtual environment
  • Download data from the MTG-Jamendo Dataset in data/jamendo. Audio files go to data/jamendo/mp3 and melspecs to data/jamendo/melspecs.
  • Process 128 bands mel spectrograms and store them in data/jamendo/melspecs2 by running:
    python preprocess.py experiments/preprocessing/melspecs2.json

Usage

Run python main.py experiments/DIR where DIR contains the parameters.

Parameters are overridable by command line arguments:

python main.py --help
usage: main.py [-h] [--data_dir DATA] [--num_workers NUM] [--restart_training] [--restore_name NAME]
               [--num_epochs EPOCHS] [--learning_rate LR] [--weight_decay WD] [--dropout DROPOUT]
               [--batch_size BS] [--manual_seed SEED] [--model MODEL] [--loss LOSS]
               [--calculate_stats]
               DIRECTORY

Train according to parameters in DIRECTORY

positional arguments:
  DIRECTORY            path of the directory containing parameters

optional arguments:
  -h, --help           show this help message and exit
  --data_dir DATA      path of the directory containing data (default: data)
  --num_workers NUM    number of workers for dataloader (default: 4)
  --restart_training   overwrite previous training (default is to resume previous training)
  --restore_name NAME  name of checkpoint to restore (default: last)
  --num_epochs EPOCHS  override number of epochs in parameters
  --learning_rate LR   override learning rate
  --weight_decay WD    override weight decay
  --dropout DROPOUT    override dropout
  --batch_size BS      override batch size
  --manual_seed SEED   override manual seed
  --model MODEL        override model
  --loss LOSS          override loss
  --calculate_stats    recalculate mean and std of data (default is to calculate only when they
                       don't exist in parameters)

Ensemble predictions

The predictions are averaged by running:

python average.py --outputs experiments/convs-m96*/predictions/test-last-swa-outputs.npy --targets experiments/convs-m96*/predictions/test-last-swa-targets.npy --preds_path predictions/convs.npy
python average.py --outputs experiments/filters-m128*/predictions/test-last-swa-outputs.npy --targets experiments/filters-m128*/predictions/test-last-swa-targets.npy --preds_path predictions/filters.npy
python average.py --outputs predictions/convs.npy predictions/filters.npy --targets predictions/targets.npy
Owner
Vincent Bour
Vincent Bour
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022