Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Overview

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021]

Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning" published in journal Computers in Industry 2021.

The same code is also an offical implementation of the method used in "End-to-end training of a two-stage neural network for defect detection" published in International Conference on Pattern Recognition 2020.

Citation

Please cite our Computers in Industry 2021 paper when using this code:

@article{Bozic2021COMIND,
  author = {Bo{\v{z}}i{\v{c}}, Jakob and Tabernik, Domen and 
  Sko{\v{c}}aj, Danijel},
  journal = {Computers in Industry},
  title = {{Mixed supervision for surface-defect detection: from weakly to fully supervised learning}},
  year = {2021}
}

How to run:

Requirements

Code has been tested to work on:

  • Python 3.8
  • PyTorch 1.6, 1.8
  • CUDA 10.0, 10.1
  • using additional packages as listed in requirements.txt

Datasets

You will need to download the datasets yourself. For DAGM and Severstal Steel Defect Dataset you will also need a Kaggle account.

  • DAGM available here.
  • KolektorSDD available here.
  • KolektorSDD2 available here.
  • Severstal Steel Defect Dataset available here.

For details about data structure refer to README.md in datasets folder.

Cross-validation splits, train/test splits and weakly/fully labeled splits for all datasets are located in splits directory of this repository, alongside the instructions on how to use them.

Using on other data

Refer to README.md in datasets for instructions on how to use the method on other datasets.

Demo - fully supervised learning

To run fully supervised learning and evaluation on all four datasets run:

./DEMO.sh
# or by specifying multiple GPU ids 
./DEMO.sh 0 1 2

Results will be written to ./results folder.

Replicating paper results

To replicate the results published in the paper run:

./EXPERIMENTS_COMIND.sh
# or by specifying multiple GPU ids 
./EXPERIMENTS_COMIND.sh 0 1 2

To replicate the results from ICPR 2020 paper:

@misc{Bozic2020ICPR,
    title={End-to-end training of a two-stage neural network for defect detection},
    author={Jakob Božič and Domen Tabernik and Danijel Skočaj},
    year={2020},
    eprint={2007.07676},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

run:

./EXPERIMENTS_ICPR.sh
# or by specifying multiple GPU ids 
./EXPERIMENTS_ICPR.sh 0 1 2

Results will be written to ./results-comind and ./results-icpr folders.

Usage of training/evaluation code

The following python files are used to train/evaluate the model:

  • train_net.py Main entry for training and evaluation
  • models.py Model file for network
  • data/dataset_catalog.py Contains currently supported datasets

In order to train and evaluate a network you can also use EXPERIMENTS_ROOT.sh, which contains several functions that will make training and evaluation easier for you. For more details see the file EXPERIMENTS_ROOT.sh.

Running code

Simplest way to train and evaluate a network is to use EXPERIMENTS_ROOT.sh, you can see examples of use in EXPERIMENTS_ICPR.sh and in EXPERIMENTS_COMIND.sh

If you wish to do it the other way you can do it by running train_net.py and passing the parameters as keyword arguments. Bellow is an example of how to train a model for a single fold of KSDD dataset.

python -u train_net.py  \
    --GPU=0 \
    --DATASET=KSDD \
    --RUN_NAME=RUN_NAME \
    --DATASET_PATH=/path/to/dataset \
    --RESULTS_PATH=/path/to/save/results \
    --SAVE_IMAGES=True \
    --DILATE=7 \
    --EPOCHS=50 \
    --LEARNING_RATE=1.0 \
    --DELTA_CLS_LOSS=0.01 \
    --BATCH_SIZE=1 \
    --WEIGHTED_SEG_LOSS=True \
    --WEIGHTED_SEG_LOSS_P=2 \
    --WEIGHTED_SEG_LOSS_MAX=1 \
    --DYN_BALANCED_LOSS=True \
    --GRADIENT_ADJUSTMENT=True \
    --FREQUENCY_SAMPLING=True \
    --TRAIN_NUM=33 \
    --NUM_SEGMENTED=33 \
    --FOLD=0

Some of the datasets do not require you to specify --TRAIN_NUM or --FOLD- After training, each model is also evaluated.

For KSDD you need to combine the results of evaluation from all three folds, you can do this by using join_folds_results.py:

python -u join_folds_results.py \
    --RUN_NAME=SAMPLE_RUN \
    --RESULTS_PATH=/path/to/save/results \
    --DATASET=KSDD 

You can use read_results.py to generate a table of results f0r all runs for selected dataset.
Note: The model is sensitive to random initialization and data shuffles during the training and will lead to different performance with different runs unless --REPRODUCIBLE_RUN is set.

Owner
ViCoS Lab
ViCoS Lab
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Jia Research Lab 182 Dec 29, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Scene text detection and recognition based on Extremal Region(ER)

Scene text recognition A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background. This algorithm is

HSIEH, YI CHIA 155 Dec 06, 2022
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021)

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 119 Dec 02, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023