Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Overview

Audio-Track Separator

architecture

Introduction

Audio Source Separation is the process of separating a mixture (e.g. a pop band recording) into isolated sounds from individual sources (e.g. just the lead vocals). Basically, splitting a song into separate vocals and instruments.

In this Repository, We developed an audio track separator in tensorflow that successfully separates Vocals and Drums from an input audio song track.

We trained a U-Net model with two output layers. One output layer predicts the Vocals and the other predicts the Drums. The number of Output layers could be increased based on the number of elements one needs to separate from input Audio Track.

Technologies used:

  1. The entire architecture is built with tensorflow.
  2. Matplotlib has been used for visualization.
  3. Numpy has been used for mathematical operations.
  4. Librosa have used for the processing of Audio files.
  5. nussl for Dataset.

The dataset

We will be using the MUSDB18 dataset for this tutorial.

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated drums, bass, vocals and others stems.

musdb18 contains two folders, a folder with a training set: "train", composed of 100 songs, and a folder with a test set: "test", composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.

All signals are stereophonic and encoded at 44.1kHz.

Exploratory Data Analysis

eda

resample

Building a Data Loader

In the pipeline we are re-sampling the audio data. For the time being our target is to separate the the Vocal and Drums audio from the original, hence the Pipeline returns original processed Audio as X and an array of processed Vocals & Drums audio as y.

Unet Architecture

model = AudioTrackSeparation()
model.build(input_shape=(None, DIM, 1))
model.build_graph().summary()

summary

summary


Implementation

Training

!python main.py --sampling_rate 11025 --train True --epoch 50 --batch 16 --model_save_path ./models/

Trains the u-net model on MUSDB18 Dataset and saves the trained model to the provided directory ( --model_save_path ).

Testing

!python main.py --sampling_rate 11025 --test /content/pop.00000.wav --model_save_path ./models/

Loads the model from model_save_path, reads the audio file from the provided path( --test ) with librosa, process it and use the model to predict the output. In the end, the predictions are visualized by a wave plot and saved to the root directory.

example1

example2

Model Performance

vocal loss

drum loss

Predictions

Drums

Drums

References

  1. Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation

  2. Multi-scale Multi-band DenseNets for Audio Source Separation

  3. Improved Speech Enhancement with the Wave-U-Net

Owner
Victor Basu
Hello! I am Data Scientist and I love to do research on Data Science and Machine Learning
Victor Basu
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022