Code for IntraQ, PyTorch implementation of our paper under review

Overview

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper

Requirements

Python >= 3.7.10

Pytorch == 1.7.1

Reproduce results

Stage1: Generate data.

cd data_generate

Please install all required package in requirements.txt.

"--save_path_head" in run_generate_cifar10.sh/run_generate_cifar100.sh is the path where you want to save your generated data pickle.

For cifar10/100

bash run_generate_cifar10.sh
bash run_generate_cifar100.sh

For ImageNet

"--save_path_head" in run_generate.sh is the path where you want to save your generated data pickle.

"--model" in run_generate.sh is the pre-trained model you want (also is the quantized model). You can use resnet18/mobilenet_w1/mobilenetv2_w1.

bash run_generate.sh

Stage2: Train the quantized network

cd ..
  1. Modify "qw" and "qa" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to select desired bit-width.

  2. Modify "dataPath" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to the real dataset path (for construct the test dataloader).

  3. Modify the "Path_to_data_pickle" in main_direct.py (line 122 and line 135) to the data_path and label_path you just generate from Stage1.

  4. Use the below commands to train the quantized network. Please note that the model that generates the data and the quantized model should be the same.

For cifar10/100

python main_direct.py --model_name resnet20_cifar10 --conf_path cifar10_resnet20.hocon --id=0

python main_direct.py --model_name resnet20_cifar100 --conf_path cifar100_resnet20.hocon --id=0

For ImageNet, you can choose the model by modifying "--model_name" (resnet18/mobilenet_w1/mobilenetv2_w1)

python main_direct.py --model_name resnet18 --conf_path imagenet.hocon --id=0

Evaluate pre-trained models

The pre-trained models and corresponding logs can be downloaded here

Please make sure the "qw" and "qa" in *.hocon, *.hocon, "--model_name" and "--model_path" are correct.

For cifar10/100

python test.py --model_name resnet20_cifar10 --model_path path_to_pre-trained model --conf_path cifar10_resnet20.hocon

python test.py --model_name resnet20_cifar100 --model_path path_to_pre-trained model --conf_path cifar100_resnet20.hocon

For ImageNet

python test.py --model_name resnet18/mobilenet_w1/mobilenetv2_w1 --model_path path_to_pre-trained model --conf_path imagenet.hocon

Results of pre-trained models are shown below:

Model Bit-width Dataset Top-1 Acc.
resnet18 W4A4 ImageNet 66.47%
resnet18 W5A5 ImageNet 69.94%
mobilenetv1 W4A4 ImageNet 51.36%
mobilenetv1 W5A5 ImageNet 68.17%
mobilenetv2 W4A4 ImageNet 65.10%
mobilenetv2 W5A5 ImageNet 71.28%
resnet-20 W3A3 cifar10 77.07%
resnet-20 W4A4 cifar10 91.49%
resnet-20 W3A3 cifar100 64.98%
resnet-20 W4A4 cifar100 48.25%
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan segĂșn la semana del semestre en que nos encontremos, y segĂșn la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022