Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Overview

Reverse_Engineering_GMs

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images".

The paper and supplementary can be found at https://arxiv.org/abs/2106.07873

alt text

Prerequisites

  • PyTorch 1.5.0
  • Numpy 1.14.2
  • Scikit-learn 0.22.2

Getting Started

Datasets

For reverse enginnering:

For deepfake detection:

  • Download the CelebA/LSUN dataset

For image_attribution:

  • Generate 110,000 images for four different GAN models as specified in https://github.com/ningyu1991/GANFingerprints/
  • For real images, use 110,000 of CelebA dataset.
  • For training: we used 100,000 images and remaining 10,000 for testing.

Training

  • Provide the train and test path in respective codes as sepecified below.
  • Provide the model path to resume training
  • Run the code

For reverse engineering, run:

python reverse_eng.py

For deepfake detection, run:

python deepfake_detection.py

For image attribution, run:

python image_attribution.py

Testing using pre-trained models

For reverse engineering, run:

python reverse_eng_test.py

For deepfake detection, run:

python deepfake_detection_test.py

For image attribution, run:

python image_attribution_test.py

If you would like to use our work, please cite:

@misc{asnani2021reverse,
      title={Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images}, 
      author={Vishal Asnani and Xi Yin and Tal Hassner and Xiaoming Liu},
      year={2021},
      eprint={2106.07873},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Comments
  • loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    Hello, I have met a problem (as in the picture below) when executing the file "reverse_eng_test.py" loading the model "11_model_set_1.pickle". Could you please tell me what does the error mean? Because I am not familiar with the architecture of the model and the given pre-trained model "11_model_set_1.pickle". Upon the error is the output of the code ( print(state1['optimizer_1']) ) added by me to see the state of the "state1['optimizer_1']". Thank you!

    image

    opened by hyhchaos 9
  • The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file. The lost .npy files are in the following codes:

    ground_truth_net_all=torch.from_numpy(np.load("ground_truth_net_131_15dim.npy")) ground_truth_loss_9_all=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_all_dev=torch.from_numpy(np.load("net_dev_131_dim.npy")) ground_truth_loss_9_all_dev=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_cluster=torch.from_numpy(np.load("net_cluster_131_dim.npy")) ground_truth_loss_9_cluster=torch.from_numpy(np.load("loss_cluster_131_dim.npy")) #ground_truth_net_all=torch.from_numpy(np.load("random_ground_truth_net_arch_91_15dim.npy")) #ground_truth_loss_all=torch.from_numpy(np.load("random_ground_truth_loss_91_3dim.npy")) #ground_truth_loss_9_all=torch.from_numpy(np.load("random_ground_truth_loss_91_9dim.npy"))

    ground_truth_p=torch.from_numpy(np.load("p_131_.npy"))

    If you could tell me where I can find them, thank you very much. Best wishes!

    opened by zhangtzq 3
  • deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    @vishal3477 I couldn't run **fake_detection_test.py". It gives the following error below. Thanks,

    optimizer.load_state_dict(state1['optimizer_1'])
    

    deepfake_detection_test_error

    opened by ssablak 3
  • What is

    What is "ground_truth_dir" in "reverse_eng_test.py"?

    I have downloaded the data and model. When I run the "reverse_eng_test.py" file, I find that I can not provide the below files. Could you please answer how can I get these files? Thank you very much!

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    
    opened by hyhchaos 3
  • torch.rfft is deprecated

    torch.rfft is deprecated

    @vishal3477 Since rfft is deprecated in the newer torch versions. It gives the following error. rfft

    I tried to fix it, but it starts to give an error as rfft2error

    Could you please help me how to define rfft in the newer version of pytorch? Thanks. -Steve

    opened by ssablak 2
  • Getting only 0.1916 Accuracy in Image Attribution

    Getting only 0.1916 Accuracy in Image Attribution

    image

    I'm getting only 0.1916 accuracy in image attribution task, in the test dataset in each of the five classes I've puted 1K generated images from respective GANs and 1K real images from CelebA, and I'm using the pre-trained model.

    I'm using the following code in image_attribution_test.py file:

    from torchvision import datasets, models, transforms #from model import * import os import torch from torch.autograd import Variable from skimage import io from scipy import fftpack import numpy as np from torch import nn import datetime from models import encoder_image_attr from models import fen import torch.nn.functional as F from sklearn.metrics import accuracy_score from sklearn import metrics import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
    parser.add_argument('--data_test',default='Test_Dataset/',help='root directory for testing data')
    parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth')
    parser.add_argument('--seed', default=1, type=int, help='manual seed')
    parser.add_argument('--batch_size', default=16, type=int, help='batch size')
    parser.add_argument('--savedir', default='runs')
    parser.add_argument('--model_dir', default='./models')
    
    
    
    opt = parser.parse_args()
    print(opt)
    print("Random Seed: ", opt.seed)
    
    device=torch.device("cuda:0")
    torch.backends.deterministic = True
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed_all(opt.seed)
    sig = "sig"
    
    
    test_path=opt.data_test
    save_dir=opt.savedir
    
    os.makedirs('%s/logs/%s' % (save_dir, sig), exist_ok=True)
    os.makedirs('%s/result_2/%s' % (save_dir, sig), exist_ok=True)
    
    transform_train = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.ToTensor(),
    transforms.Normalize((0.6490, 0.6490, 0.6490), (0.1269, 0.1269, 0.1269))
    ])
    
    
    test_set=datasets.ImageFolder(test_path, transform_train)
    
    
    test_loader = torch.utils.data.DataLoader(test_set,batch_size=opt.batch_size,shuffle =True, num_workers=1)
    
    
    
    model=fen.DnCNN().to(device)
    
    model_params = list(model.parameters())    
    optimizer = torch.optim.Adam(model_params, lr=opt.lr)
    l1=torch.nn.MSELoss().to(device)
    l_c = torch.nn.CrossEntropyLoss().to(device)
    
    model_2=encoder_image_attr.encoder(num_hidden=512).to(device)
    optimizer_2 = torch.optim.Adam(model_2.parameters(), lr=opt.lr)
    state = {
        'state_dict_cnn':model.state_dict(),
        'optimizer_1': optimizer.state_dict(),
        'state_dict_class':model_2.state_dict(),
        'optimizer_2': optimizer_2.state_dict()
        
    }
    
    
    state1 = torch.load("pre_trained_models/image_attribution/celeba/0_model_27_384000.pickle")
    optimizer.load_state_dict(state1['optimizer_1'])
    model.load_state_dict(state1['state_dict_cnn'])
    optimizer_2.load_state_dict(state1['optimizer_2'])
    model_2.load_state_dict(state1['state_dict_class'])
    
    
    
    
    def test(batch, labels):
        model.eval()
        model_2.eval()
        with torch.no_grad():
            y,low_freq_part,max_value ,y_orig,residual, y_trans,residual_gray =model(batch.type(torch.cuda.FloatTensor))
            y_2=torch.unsqueeze(y.clone(),1)
            classes, features=model_2(y_2)
            classes_f=torch.max(classes, dim=1)[0]
            
            n=25
            zero=torch.zeros([y.shape[0],2*n+1,2*n+1], dtype=torch.float32).to(device)  
            zero_1=torch.zeros(residual_gray.shape, dtype=torch.float32).to(device)
            loss1=0.5*l1(low_freq_part,zero).to(device) 
            loss2=-0.001*max_value.to(device)
            loss3 = 0.01*l1(residual_gray,zero_1).to(device)
            loss_c =10*l_c(classes,labels.type(torch.cuda.LongTensor))
            loss5=0.1*l1(y,y_trans).to(device)
            loss=(loss1+loss2+loss3+loss_c+loss5)
        return y, loss.item(), loss1.item(),loss2.item(),loss3.item(),loss_c.item(),loss5.item(),y_orig, features,residual,torch.max(classes, dim=1)[1], classes[:,1]
    
    
    print(len(test_set))
    print(test_set.class_to_idx)
    epochs=2
    
    
    for epoch in range(epochs):
        all_y=[]
        all_y_test=[]
        flag1=0
        count=0
        itr=0
        
        for batch_idx_test, (inputs_test,labels_test) in enumerate(test_loader):
    
            out,loss,loss1,loss2,loss3,loss4,loss5, out_orig,features,residual,pred,scores=test(Variable(torch.FloatTensor(inputs_test)),Variable(torch.LongTensor(labels_test)))
    
            if flag1==0:
                all_y_test=labels_test
                all_y_pred_test=pred.detach()
                all_scores=scores.detach()
                flag1=1
    
            else:
                all_y_pred_test=torch.cat([all_y_pred_test,pred.detach()], dim=0)
                all_y_test=torch.cat([all_y_test,labels_test], dim=0)
                all_scores=torch.cat([all_scores,scores], dim=0)
        fpr1, tpr1, thresholds1 = metrics.roc_curve(all_y_test, np.asarray(all_scores.cpu()), pos_label=1)
        print("testing accuracy is:", accuracy_score(all_y_test,np.asarray(all_y_pred_test.cpu())))
    
    opened by indrakumarmhaski 1
  • Groundtruth Files Issue

    Groundtruth Files Issue

    Hi Vishal, Where can I download the following files? I see three .npy files on the repo but the naming is not matching the exact files between repo and source code.

    I changed the filename in repo below

    FROM ground_truth_loss_func_3dim_file.npy ground_truth_loss_func_8dim_file.npy ground_truth_net_arch_15dim_file.npy groundtruth2

    TO below ground_truth_loss_100_9dim.npy ground_truth_net_arch_100_15dim.npy ground_truth_loss_100_3dim.npy

    groundtruthfiles

    But it didn't run through. It gives the following error

    error

    Thanks, -Steve

    opened by ssablak 1
  • I have a question

    I have a question

    hello, do i need to create all the paths in the reverse_eng.py ? what do i need to save for wach folder?

    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate') parser.add_argument('--data_train',default='mnt/scratch/asnanivi/GAN_data_6/set_1/train',help='root directory for training data') parser.add_argument('--data_test',default='mnt/scratch/asnanivi/GAN_data_6/set_1/test',help='root directory for testing data') parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth') parser.add_argument('--seed', default=1, type=int, help='manual seed') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--savedir', default='/mnt/scratch/asnanivi/runs') parser.add_argument('--model_dir', default='./models') parser.add_argument('--N_given', nargs='+', help='position number of GM from list of GMs used in testing', default=[1,2,3,4,5,6])

    os.chmod('./mnt/scratch',0o777) os.makedirs('.%s/result_3/%s' % (save_dir, sig), exist_ok=True)

    i also had a mistake:Couldn't find any class folder in mnt/scratch/asnanivi/GAN_data_6/set_1/train

    Thanks!

    opened by YZF-Myself 1
  • There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    I'm sorry to have bothered you. But I didn't find the code for discrete type network structure parameter clustering prediction in the encoder_rev_eng.py file of the original models folder or in the latest Reverse Engineering 2.0 code compressed file. However, your article states the clustering prediction about discrete type network structure parameters, which is important to the result. Looking forward to your reply.

    opened by zhangtzq 5
  • Ground truth file missing

    Ground truth file missing

    Hi, thank you for sharing your code and data. I'm trying to run the reverse_eng_train.py and reverse_eng_test.py scripts, but both are failing due to missing files required in the following lines:

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    

    I downloaded the dataset of trained models from the google drive link in the Readme, but couldn't find any information about where we can access those ground-truth data.

    Also, could you verify that the file in the google drive 11_model_set_1.pickle contains the 100 trained models? When I load the file (e.g. data = torch.load('11_model_set_1.pickle), I am getting a checkpoint of a single model (and optimizers). I'd appreciate if you could verify that this is the right file to download the trained models.

    Thank you!

    opened by cocoaaa 1
  • Parameter setting in deepfake detection

    Parameter setting in deepfake detection

    Thank you very much for your contribution.In the deepfake detection module of the paper, parameter lambda1-4 are set as follows which is inconsistent with the code: 参数设置

    loss1=0.05*l1(low_freq_part,zero).to(device) 
    loss2=-0.001*max_value.to(device)
    loss3 = 0.01*l1(residual_gray,zero_1).to(device)
    loss_c =20*l_c(classes,labels.type(torch.cuda.LongTensor))
    loss5=0.1*l1(y,y_trans).to(device)
    

    Can you explain that? Thank you.

    opened by wytcsuch 5
Releases(v2.0)
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023