Baselines for TrajNet++

Overview

TrajNet++ : The Trajectory Forecasting Framework

PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective

docs/train/cover.png

TrajNet++ is a large scale interaction-centric trajectory forecasting benchmark comprising explicit agent-agent scenarios. Our framework provides proper indexing of trajectories by defining a hierarchy of trajectory categorization. In addition, we provide an extensive evaluation system to test the gathered methods for a fair comparison. In our evaluation, we go beyond the standard distance-based metrics and introduce novel metrics that measure the capability of a model to emulate pedestrian behavior in crowds. Finally, we provide code implementations of > 10 popular human trajectory forecasting baselines.

Data Setup

The detailed step-by-step procedure for setting up the TrajNet++ framework can be found here

Converting External Datasets

To convert external datasets into the TrajNet++ framework, refer to this guide

Training Models

LSTM

The training script and its help menu: python -m trajnetbaselines.lstm.trainer --help

Run Example

## Our Proposed D-LSTM
python -m trajnetbaselines.lstm.trainer --type directional --augment

## Social LSTM
python -m trajnetbaselines.lstm.trainer --type social --augment --n 16 --embedding_arch two_layer --layer_dims 1024

GAN

The training script and its help menu: python -m trajnetbaselines.sgan.trainer --help

Run Example

## Social GAN (L2 Loss + Adversarial Loss)
python -m trajnetbaselines.sgan.trainer --type directional --augment

## Social GAN (Variety Loss only)
python -m trajnetbaselines.sgan.trainer --type directional --augment --d_steps 0 --k 3

Evaluation

The evaluation script and its help menu: python -m evaluator.trajnet_evaluator --help

Run Example

## TrajNet++ evaluator (saves model predictions. Useful for submission to TrajNet++ benchmark)
python -m evaluator.trajnet_evaluator --output OUTPUT_BLOCK/trajdata/lstm_directional_None.pkl --path <path_to_test_file>

## Fast Evaluator (does not save model predictions)
python -m evaluator.fast_evaluator --output OUTPUT_BLOCK/trajdata/lstm_directional_None.pkl --path <path_to_test_file>

More details regarding TrajNet++ evaluator are provided here

Evaluation on datasplits is based on the following categorization

Results

Unimodal Comparison of interaction encoder designs on interacting trajectories of TrajNet++ real world dataset. Errors reported are ADE / FDE in meters, collisions in mean % (std. dev. %) across 5 independent runs. Our goal is to reduce collisions in model predictions without compromising distance-based metrics.

Method ADE/FDE Collisions
LSTM 0.60/1.30 13.6 (0.2)
S-LSTM 0.53/1.14 6.7 (0.2)
S-Attn 0.56/1.21 9.0 (0.3)
S-GAN 0.64/1.40 6.9 (0.5)
D-LSTM (ours) 0.56/1.22 5.4 (0.3)

Interpreting Forecasting Models

docs/train/LRP.gif

Visualizations of the decision-making of social interaction modules using layer-wise relevance propagation (LRP). The darker the yellow circles, the more is the weight provided by the primary pedestrian (blue) to the corresponding neighbour (yellow).

Code implementation for explaining trajectory forecasting models using LRP can be found here

Benchmarking Models

We host the Trajnet++ Challenge on AICrowd allowing researchers to objectively evaluate and benchmark trajectory forecasting models on interaction-centric data. We rely on the spirit of crowdsourcing, and encourage researchers to submit their sequences to our benchmark, so the quality of trajectory forecasting models can keep increasing in tackling more challenging scenarios.

Citation

If you find this code useful in your research then please cite

@article{Kothari2020HumanTF,
  title={Human Trajectory Forecasting in Crowds: A Deep Learning Perspective},
  author={Parth Kothari and S. Kreiss and Alexandre Alahi},
  journal={ArXiv},
  year={2020},
  volume={abs/2007.03639}
}
Comments
  • Problem training lstm

    Problem training lstm

    Hi, while trying to train social Lstm I encountered this error UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)

    Which is weird because the older version of the repo works fine with the same dataset.

    Also I tried switching to Pytorch 1.0.0 but it doesn't work either because of Flatten. AttributeError: module 'torch.nn' has no attribute 'Flatten'

    Can you please tell me what's going wrong? Thanks

    opened by sanmoh99 8
  • Data normalization? Minor errors and minor suggestions

    Data normalization? Minor errors and minor suggestions

    Hi,

    First of all congratulations on this fruitful work.

    Then, I have a technical question. It seems that you don't normalize the data in any of the steps. Thus, why did you choose the standard Gaussian noise? It should provide samples with high variance wrt to k.

    After downloading and installing the social force simulator, I ran the trainer and it threw an error: ModuleNotFoundError: No module named 'socialforce.fieldofview'

    After changing to: from socialforce.field_of_view import FieldOfView

    Everything worked fine.

    opened by tmralmeida 2
  • Can't compute collision percentages for Kalman Filter baseline

    Can't compute collision percentages for Kalman Filter baseline

    Hello. Hope everyone that is reading this is doing well.

    I was trying to run the trajnet evaluation code for the Kalman filter implementation, but I get "-1" for the Col-I metric.

    From what I read in #15 , this is because the number of predicted tracks for the neighbours is not equal to the number of ground truth tracks. Upon closer inspection, I was obtaining additional elements on the list of tracks, that corresponded to empty lists (no actual positions).

    While I'm not sure why this happened, I think it might be related to this issue, where the start and end frames for different scenes are not completely separate, for the converted data using the [Trajnet++ dataset]((https://github.com/vita-epfl/trajnetplusplusdataset) code.

    Can someone confirm that that is the case? I'm assuming I'm not the only one to have come accross this issue. I could make a script to perform such separation, and see if that is the actual problem. If I don't find any existing code to do so, I suppose that's my best option.

    opened by pedro-mgb 2
  • Issue about plot_log.py

    Issue about plot_log.py

    Dear Author, When I use plot_log.py,only the resulting accuracy picture is blank.The name is xx.val.png. As shown in the figure below: image What should I do to make the accuracy show up correctly? Thank you for your reply.

    opened by xieyunjiao 2
  • Issue about fast_evaluator and trajnet_evaluator

    Issue about fast_evaluator and trajnet_evaluator

    Hello,I've been using Trajnet ++ to evaluate trained models recently, Whether I use fast_evaluator or trajner_evaluator, my col-I is always -1. I read that part of the code, and the condition for col-I to occur isnum_gt_neigh ==num_predicted_neigh. But I don't know how I can modify the code to compute COL-I. Thank you very much for answering my questions.

    opened by xieyunjiao 2
  • RuntimeError: CUDA error: out of memory

    RuntimeError: CUDA error: out of memory

    Hi, When I run trajnet_evaluator.py after training with cuda. RuntimeError: CUDA error: out of memory

    Is it my personal problem? or Only can I train this code on CPU?

    opened by 396559551 2
  • No module named 'socialforce' ??

    No module named 'socialforce' ??

    Hi, first of all, thank you for sharing this great work.

    "python -m trajnetbaselines.lstm.trainer --type directional --augment" I just ran this command but I have faced the below error. No module named 'socialforce'

    Is there something I should do install or include? Thank you,

    opened by moonsh 2
  • Problem running Sgan model

    Problem running Sgan model

    Hello, I've tried to run the code and encountered error regarding to layer_dims parameter. In the help section it's said to give it like an array [--layer_dims [LAYER_DIMS [LAYER_DIMS ...]]] but again I can't train the model.

    I run the following command: python -m trajnetbaselines.sgan.trainer --batch_size 1 --lr 1e-3 --obs_length 9 --pred_length 12 --type 'social' --norm_pool --layer_dims 10 10

    and get this error:

    Traceback (most recent call last): File "/usr/local/Cellar/python/3.7.3/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/usr/local/Cellar/python/3.7.3/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/trainer.py", line 533, in main() File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/trainer.py", line 529, in main trainer.loop(train_scenes, val_scenes, train_goals, val_goals, args.output, epochs=args.epochs, start_epoch=start_epoch) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/trainer.py", line 73, in loop self.train(train_scenes, train_goals, epoch) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/trainer.py", line 141, in train loss, _ = self.train_batch(scene, scene_goal, step_type) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/trainer.py", line 210, in train_batch rel_output_list, outputs, scores_real, scores_fake = self.model(observed, goals, prediction_truth, step_type=step_type) File "/Users/sasa/Desktop/trajnetplusplusbaselines/venv/trajnet3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl result = self.forward(*input, **kwargs) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/sgan.py", line 77, in forward rel_pred_scene, pred_scene = self.generator(observed, goals, prediction_truth, n_predict) File "/Users/sasa/Desktop/trajnetplusplusbaselines/venv/trajnet3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl result = self.forward(*input, **kwargs) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/sgan.py", line 283, in forward hidden_cell_state = self.adding_noise(hidden_cell_state) File "/Users/sasa/Desktop/trajnetplusplusbaselines/trajnetbaselines/sgan/sgan.py", line 154, in adding_noise noise = torch.zeros(self.noise_dim, device=hidden_cell_state.device) AttributeError: 'tuple' object has no attribute 'device'

    I appreciate it if you can tell me where i went wrong or give an example command that trains the model.

    Thanks in advance

    opened by sanmoh99 2
  • Challenge submission:

    Challenge submission: "No more retries left"

    I just submitted a zip file with my predictions to the AIcrowd challenge. However, the submission failed with the message: "No more retries left". What does this mean?

    opened by S-Hauri 1
  •  FDE score of 1.14 with social LSTM

    FDE score of 1.14 with social LSTM

    Hi! I am trying to get the FDE score of 1.14 with social LSTM.

    Did you train on the whole (with cff) training dataset? How many epochs? And with which parameters?

    Thanks in advance Many greetings

    opened by Mirorrn 1
  • Fix for Kalman filter to also output trajectories of neighbours

    Fix for Kalman filter to also output trajectories of neighbours

    Summary

    Minor but important fix in Kalman filter model, to also output trajectories of neighbours

    Content

    The variable that contained the neighbour predictions (neighbour_tracks - see line 8 of the file that was changed for initialization) was being overwriten, and so those tracks ended up being lost. This PR involves removing the line in which the variable is overwritten.

    Effect

    This was causing KF to only output trajectory of primary pedestrian, which made the computation of Col-I metric impossible.

    Related PRs/Issues

    This (partially) addresses #19.

    opened by pedro-mgb 1
  • Generative loss stuck

    Generative loss stuck

    Hi,

    Regarding the Social GAN model and while playing with your code, I found something that I couldn't understand.

    E.g while running:

    python -m trajnetbaselines.sgan.trainer --k 1
    

    It means that we are running a vanilla GAN where the generator outputs one sample (the most common GAN setting without the L2 loss); In doing so, the GAN loss is always 1.38 throughout the training. Thus, the vanilla GAN (with only the adversarial loss) is not capable of modeling the data.

    My question is to what extent are we taking advantage of a GAN framework? It seems that we are only training an LSTM predictor (when running under the aforementioned conditions).

    opened by tmralmeida 0
  • Inclusion of Social Anchor model as baseline?

    Inclusion of Social Anchor model as baseline?

    Hello!

    I just saw a release of a recent paper for Interpretable Social Anchors for Human Trajectory Forecasting in Crowds, and it seems like a very intuitive idea for modelling crowd behaviour.

    I was wondering if there will be any open source version of the model available in the future, and if it may be added to this repository as a list of baselines?

    Thank you!

    opened by pedro-mgb 2
Releases(v1.0)
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022