End-To-End Optimization of LiDAR Beam Configuration

Overview

End-To-End Optimization of LiDAR Beam Configuration

arXiv | IEEE Xplore

This repository is the official implementation of the paper:

End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization

Niclas Vödisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai.

To appear in RA-L.

Overview of 3D object detection

If you find our work useful, please consider citing our paper:

to be added after publication

📔 Abstract

Pre-determined beam configurations of low-resolution LiDARs are task-agnostic, hence simply using can result in non-optimal performance. In this work, we propose to optimize the beam distribution for a given target task via a reinforcement learning-based learning-to-optimize (RL-L2O) framework. We design our method in an end-to-end fashion leveraging the final performance of the task to guide the search process. Due to the simplicity of our approach, our work can be integrated with any LiDAR-based application as a simple drop-in module. In this repository, we provide the code for the exemplary task of 3D object detection.

🏗️ ️ Setup

To clone this repository and all submodules run:

git clone --recurse-submodules -j8 [email protected]:vniclas/lidar_beam_selection.git

⚙️ Installation

To install this code, please follow the steps below:

  1. Create a conda environment: conda create -n beam_selection python=3.8
  2. Activate the environment: conda activate beam_selection
  3. Install dependencies: pip install -r requirements.txt
  4. Install cudatoolkit (change to the used CUDA version):
    conda install cudnn cudatoolkit=10.2
  5. Install spconv (change to the used CUDA version):
    pip install spconv-cu102
  6. Install OpenPCDet (linked as submodule):
    cd third_party/OpenPCDet && python setup.py develop && cd ../..
  7. Install Pseudo-LiDAR++ (linked as submodule):
    pip install -r third_party/Pseudo_Lidar_V2/requirements.txt
    pip install pillow==8.3.2 (avoid runtime warnings)

💾 Data Preparation

  1. Download KITTI 3D Object Detection dataset and extract the files:
    1. Left color images image_2
    2. Right color images image_3
    3. Velodyne point clouds velodyne
    4. Camera calibration matrices calib
    5. Training labels label_2
  2. Predict the depth maps:
    1. Download pretrained model (training+validation)
    2. Generate the data:
    cd third_party/Pseudo_Lidar_V2  
    python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume PATH_TO_CHECKPOINTS/sdn_kitti_object_trainval.pth --datapath PATH_TO_KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval \
    --save_path PATH_TO_DATA/sdn_kitti_train_set
    Note: Please adjust the paths PATH_TO_CHECKPOINTS, PATH_TO_KITTI, and PATH_TO_DATA to match your setup.
  3. Rename training/velodyne to training/velodyne_original
  4. Symlink the KITTI folders to PCDet:
    • ln -s PATH_TO_KITTI/training third_party/OpenPCDet/data/kitti/training
    • ln -s PATH_TO_KITTI/testing third_party/OpenPCDet/data/kitti/testing

🏃 Running 3D Object Detection

  1. Adjust paths in main.py. Further available parameters are listed in rl_l2o/eps_greedy_search.py and can be added in main.py.
  2. Adjust the number of epochs of the 3D object detector in (we used 40 epochs):
  3. Adjust the training scripts of the utilized detector to match your setup, e.g., object_detection/scripts/train_pointpillar.sh.
  4. Initiate the search: python main.py
    Note: Since we keep intermediate results to easily re-use them in later iterations, running the script will create a lot of data in the output_dir specified in main.py. You might want to manually delete some folders from time to time.

🔧 Adding more Tasks

Due to the design of the RL-L2O framework, it can be used as a simple drop-in module for many LiDAR applications. To apply the search algorithm to another task, just implement a custom RewardComputer, e.g., see object_detection/compute_reward.py. Additionally, you will have to prepare a set of features for each LiDAR beam. For the KITTI 3D Object Detection dataset, we provide the features as presented in the paper in object_detection/data/features_pcl.pkl.

👩‍⚖️ License

Creative Commons License
This software is made available for non-commercial use under a Creative Commons Attribution-NonCommercial 4.0 International License. A summary of the license can be found on the Creative Commons website.

Owner
Niclas
PhD student
Niclas
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022