Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

Related tags

Deep Learningmetasdf
Overview

MetaSDF: Meta-learning Signed Distance Functions

Project Page | Paper | Data

Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely
Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "MetaSDF: Meta-Learning Signed Distance Functions".

In this paper, we show how we may effectively learn a prior over implicit neural representations using gradient-based meta-learning.

While in the paper, we show this for the special case of SDFs with the ReLU nonlinearity, this works formidably well with other types of neural implicit representations - such as our work "SIREN"!

We show you how in our Colab notebook:

Explore MetaSDF in Colab

DeepSDF

A large part of this codebase (directory "3D") is based on the code from the terrific paper "DeepSDF" - check them out!

Get started

If you only want to experiment with MetaSDF, we have written a colab that doesn't require installing anything, and goes through a few other interesting properties of MetaSDF as well - for instance, it turns out you can train SIREN to fit any image in only just three gradient descent steps!

If you want to reproduce all the experiments from the paper, you can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate metasdf

3D Experiments

Dataset Preprocessing

Before training a model, you'll first need to preprocess the training meshes. Please follow the preprocessing steps used by DeepSDF if using ShapeNet.

Define an Experiment

Next, you'll need to define the model and hyperparameters for your experiment. Examples are given in 3D/curriculums.py, but feel free to make modifications. Although not present in the original paper, we've included some curriculums with positional encodings and smaller models. These generally perform on par with the original models but require much less memory.

Train a Model

After you've preprocessed your data and have defined your curriculum, you're ready to start training! Navigate to the 3D/scripts directory and run

python run_train.py <curriculum name>.

If training is interupted, pass the flag --load flag to continue training from where you left off.

You should begin seeing printouts of loss, with a summary at every epoch. Checkpoints and Tensorboard summaries are saved to the 'output_dir' directory, as defined in your curriculum. We log raw loss, which is either the composite loss or L1 loss, depending on your experiment definition, as well as a 'Misclassified Percentage'. The 'Misclassified Percentage' is the percentage of samples that the model incorrectly classified as inside or outside the mesh.

Reconstructing Meshes

After training a model, recontruct some meshes using

python run_reconstruct.py <curriculum name> --checkpoint <checkpoint file name>.

The script will use the 'test_split' as defined in the curriculum.

Evaluating Reconstructions

After reconstructing meshes, calculate Chamfer Distances between reconstructions and ground-truth meshes by running

python run_eval.py <reconstruction dir>.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks.

Citation

If you find our work useful in your research, please cite:

       @inproceedings{sitzmann2019metasdf,
            author = {Sitzmann, Vincent
                      and Chan, Eric R.
                      and Tucker, Richard
                      and Snavely, Noah
                      and Wetzstein, Gordon},
            title = {MetaSDF: Meta-Learning Signed
                     Distance Functions},
            booktitle = {Proc. NeurIPS},
            year={2020}
       }

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
I'm researching 3D-structured neural scene representations. Ph.D. student in Stanford's Computational Imaging Group.
Vincent Sitzmann
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022