Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Overview

Visual Interestingness


Install Dependencies

This version is tested in PyTorch 1.7

  pip3 install -r requirements.txt

Long-term Learning

  • You may skip this step, if you download the pre-trained vgg16.pt into folder "saves".

  • Download coco dataset into folder [data-root]:

    bash download_coco.sh [data-root] # replace [data-root] by your desired location
    

    The dataset will be look like:

    data-root
    ├──coco
       ├── annotations
       │   ├── annotations_trainval2017
       │   └── image_info_test2017
       └── images
           ├── test2017
           ├── train2017
           └── val2017
    
  • Run

    python3 longterm.py --data-root [data-root] --model-save saves/vgg16.pt
    
    # This requires a long time for training on single GPU.
    # Create a folder "saves" manually and a model named "ae.pt" will be saved.
    

Short-term Learning

  • Dowload the SubT front camera data (SubTF) and put into folder "data-root", so that it looks like:

    data-root
    ├──SubTF
       ├── 0817-ugv0-tunnel0
       ├── 0817-ugv1-tunnel0
       ├── 0818-ugv0-tunnel1
       ├── 0818-ugv1-tunnel1
       ├── 0820-ugv0-tunnel1
       ├── 0821-ugv0-tunnel0
       ├── 0821-ugv1-tunnel0
       ├── ground-truth
       └── train
    
  • Run

    python3 shortterm.py --data-root [data-root] --model-save saves/vgg16.pt --dataset SubTF --memory-size 100 --save-flag n100usage
    
    # This will read the previous model "ae.pt".
    # A new model "ae.pt.SubTF.n1000.mse" will be generated.
    
  • You may skip this step, if you download the pre-trained vgg16.pt.SubTF.n100usage.mse into folder "saves".

On-line Learning

  • Run

      python3 online.py --data-root [data-root] --model-save saves/vgg16.pt.SubTF.n100usage.mse --dataset SubTF --test-data 0 --save-flag n100usage
    
      # --test-data The sequence ID in the dataset SubTF, [0-6] is avaiable
      # This will read the trained model "vgg16.pt.SubTF.n100usage.mse" from short-term learning.
    
  • Alternatively, you may test all sequences by running

      bash test.sh
    
  • This will generate results files in folder "results".

  • You may skip this step, if you download our generated results.


Evaluation

  • We follow the SubT tutorial for evaluation, simply run

    python performance.py --data-root [data-root] --save-flag n100usage --category normal --delta 1 2 3
    # mean accuracy: [0.64455275 0.8368784  0.92165116 0.95906876]
    
    python performance.py --data-root [data-root] --save-flag n100usage --category difficult --delta 1 2 4
    # mean accuracy: [0.42088688 0.57836163 0.67878168 0.75491805]
    
  • This will generate performance figures and create data curves for two categories in folder "performance".


Citation

      @inproceedings{wang2020visual,
        title={Visual memorability for robotic interestingness via unsupervised online learning},
        author={Wang, Chen and Wang, Wenshan and Qiu, Yuheng and Hu, Yafei and Scherer, Sebastian},
        booktitle={European Conference on Computer Vision (ECCV)},
        year={2020},
        organization={Springer}
      }
      
      @article{wang2021unsupervised,
        title={Unsupervised Online Learning for Robotic Interestingness with Visual Memory},
        author={Wang, Chen and  Qiu, Yuheng and Wang, Wenshan and Hu, Yafei anad Kim, Seungchan and Scherer, Sebastian},
        journal={IEEE Transactions on Robotics (T-RO)},
        year={2021},
        publisher={IEEE}
      }

You may watch the following video to catch the idea of this work.

You might also like...
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Code for ECCV 2020 paper
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

SNE-RoadSeg in PyTorch, ECCV 2020
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

[ECCV 2020] Gradient-Induced Co-Saliency Detection
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Code for Towards Streaming Perception (ECCV 2020) :car:
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Comments
  • Variable

    Variable

    https://github.com/wang-chen/interestingness/blob/6994d50bd47d14b617f34f5c36c1beaba03acfdc/test_interest.py#L94

    I think using Variable() will just return a tensor object in the new pytorch version.

    opened by haleqiu 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022