Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Overview

Path-Generator-QA

This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering [arxiv][project page]

Code folders:

(1) learning-generator: conduct path sampling and then train the path generator.

(2) commonse-qa: use the generator to generate paths and then train the qa system on task dataset.

(3) A-Commonsense-Path-Generator-for-Connecting-Entities.ipynb: The notebook illustrating how to use our proposed generator to connect a pair of entities with a commonsense relational path.

Part of this code and instruction rely on our another project [code][arxiv]. Please cite both of our works if you use this code. Thanks!

@article{wang2020connecting,
  title={Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering},
  author={Wang, Peifeng and Peng, Nanyun and Szekely, Pedro and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00691},
  year={2020}
}

@article{feng2020scalable,
  title={Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering},
  author={Feng, Yanlin and Chen, Xinyue and Lin, Bill Yuchen and Wang, Peifeng and Yan, Jun and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00646},
  year={2020}
}

Dependencies

  • Python >= 3.6
  • PyTorch == 1.1
  • transformers == 2.8.0
  • dgl == 0.3 (GPU version)
  • networkx == 2.3

Run the following commands to create a conda environment:

conda create -n pgqa python=3.6
source activate pgqa
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
pip install dgl-cu100
pip install transformers==2.8.0 tqdm networkx==2.3 nltk spacy==2.1.6
python -m spacy download en

For training a path generator

cd learning-generator
cd data
unzip conceptnet.zip
cd ..
python sample_path_rw.py

After path sampling, shuffle the resulting data './data/sample_path/sample_path.txt' and then split them into train.txt, dev.txt and test.txt by ratio of 0.9:0.05:0.05 under './data/sample_path/'

Then you can start to train the path generator by running

# the first arg is for specifying which gpu to use
./run.sh $gpu_device

The checkpoint of the path generator would be stored in './checkpoints/model.ckpt'. Move it to '../commonsense-qa/saved_models/pretrain_generator'. So far, we are done with training the generator.

Alternatively, you can also download our well-trained path generator checkpoint.

For training a commonsense qa system

1. Download Data

First, you need to download all the necessary data in order to train the model:

cd commonsense-qa
bash scripts/download.sh

2. Preprocess

To preprocess the data, run:

python preprocess.py

3. Using the path generator to connect question-answer entities

(Modify ./config/path_generate.config to specify the dataset and gpu device)

./scripts/run_generate.sh

4. Commonsense QA system training

bash scripts/run_main.sh ./config/csqa.config

Training process and final evaluation results would be stored in './saved_models/'

Owner
Peifeng Wang
Peifeng Wang
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods πŸ”΄ Now framework-agnostic! (Example core notebook) πŸ”΄ πŸ”— For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos πŸŽ‰οΈ πŸ“œ Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021