Image Segmentation and Object Detection in Pytorch

Overview

Image Segmentation and Object Detection in Pytorch

Pytorch-Segmentation-Detection is a library for image segmentation and object detection with reported results achieved on common image segmentation/object detection datasets, pretrained models and scripts to reproduce them.

Segmentation

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) or Full PASCAL VOC 2012 Validation dataset (VOC-2012) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link Related paper
Resnet-18-8s RV-VOC12 59.0 in prog. in prog. 28 ms. Dropbox DeepLab
Resnet-34-8s RV-VOC12 68.0 in prog. in prog. 50 ms. Dropbox DeepLab
Resnet-50-16s VOC12 66.5 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s VOC12 67.0 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s-deep-sup VOC12 67.1 in prog. in prog. in prog. in prog. DeepLab
Resnet-101-16s VOC12 68.6 in prog. in prog. in prog. in prog. DeepLab
PSP-Resnet-18-8s VOC12 68.3 n/a n/a n/a in prog. PSPnet
PSP-Resnet-50-8s VOC12 73.6 n/a n/a n/a in prog. PSPnet

Some qualitative results:

Alt text

Endovis 2017

Implemented models were trained on Endovis 2017 segmentation dataset and the sequence number 3 was used for validation and was not included in training dataset.

The code to acquire the training and validating the model is also provided in the library.

Additional Qualitative results can be found on this youtube playlist.

Binary Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-9-8s Seq # 3 * 96.1 in prog. in prog. 13.3 ms. Dropbox
Resnet-18-8s Seq # 3 96.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog.

Resnet-9-8s network was tested on the 0.5 reduced resoulution (512 x 640).

Qualitative results (on validation sequence):

Alt text

Multi-class Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-8s Seq # 3 81.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog

Qualitative results (on validation sequence):

Alt text

Cityscapes

The dataset contains video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames. The annotations contain 19 classes which represent cars, road, traffic signs and so on.

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-32s Validation set 61.0 in prog. in prog. in prog. in prog.
Resnet-18-8s Validation set 60.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Validation set 69.1 in prog. in prog. 50 ms. Dropbox
Resnet-50-16s-PSP Validation set 71.2 in prog. in prog. in prog. in prog.

Qualitative results (on validation sequence):

Whole sequence can be viewed here.

Alt text

Installation

This code requires:

  1. Pytorch.

  2. Some libraries which can be acquired by installing Anaconda package.

    Or you can install scikit-image, matplotlib, numpy using pip.

  3. Clone the library:

git clone --recursive https://github.com/warmspringwinds/pytorch-segmentation-detection

And use this code snippet before you start to use the library:

import sys
# update with your path
# All the jupyter notebooks in the repository already have this
sys.path.append("/your/path/pytorch-segmentation-detection/")
sys.path.insert(0, '/your/path/pytorch-segmentation-detection/vision/')

Here we use our pytorch/vision fork, which might be merged and futher merged in a future. We have added it as a submodule to our repository.

  1. Download segmentation or detection models that you want to use manually (links can be found below).

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022