Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

Related tags

Deep LearningAVATAR
Overview

AVATAR

  • Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.
  • AVATAR stands for jAVA-pyThon progrAm tRanslation.
  • AVATAR is a corpus of 8,475 programming problems and their solutions written in Java and Python.
  • Supervised fine-tuning and evaluation in terms of Computational Accuracy, see details here.

Table of Contents

Dataset

We have collected the programming problems and their solutions from competitive programming sites, online platforms, and open source repositories. We list the sources below.

  • CodeForces
  • AtCoder
  • CodeJam
  • GeeksforGeeks
  • LeetCode
  • ProjectEuler

Data collected can be downloaded by following:

cd data
bash download.sh

To prepare the data, we perform the following steps.

  • Removing docstrings, comments, etc.
  • Use baseline models' tokenizer to perform tokenization.
  • Filter data based on length threshold (~512).
  • Perform de-duplication. (remove examples that are duplicates)

To perform the preparation, run:

cd data
bash prepare.sh

Models

We studied 8 models for program translation.

Models trained from scratch

Pre-trained models

Training & Evaluation

To train and evaluate a model, go to the corresponding model directory and execute the run.sh script.

# Seq2Seq+Attn.
cd seq2seq
bash rnn.sh GPU_ID LANG1 LANG2

# Transformer
cd seq2seq
bash transformer.sh GPU_ID LANG1 LANG2

# CodeGPT
cd codegpt
bash run.sh GPU_ID LANG1 LANG2 CodeGPT

# CodeGPT-adapted
cd codegpt
bash run.sh GPU_ID LANG1 LANG2

# CodeBERT
cd codebert
bash run.sh GPU_ID LANG1 LANG2

# GraphCoderBERT
cd graphcodebert
bash run.sh GPU_ID LANG1 LANG2

# PLBART
cd plbart
# fine-tuning either for Java->Python or Python-Java
bash run.sh GPU_ID LANG1 LANG2
# multilingual fine-tuning
bash multilingual.sh GPU_ID

# Naive Copy
cd naivecopy
bash run.sh
  • Here, LANG1 LANG2=Java Python or LANG1 LANG2=Python Java.
  • Download pre-trained PLBART, GraphCodeBERT, and Transcoder model files by running download.sh script.
  • We trained the models on GeForce RTX 2080 ti GPUs (11019MiB).

Benchmarks

We evaluate the models' performances on the test set in terms of Compilation Accuracy (CA), BLEU, Syntax Match (SM), Dataflow Match (DM), CodeBLEU (CB), Exact Match (EM). We report the model performances below.

Training Models Java to Python Python to Java
CA BLEU SM DM CB EM CA BLEU SM DM CB EM
None Naive Copy - 23.4 - - - 0.0 - 26.9 - - - 0.0
TransCoder 76.9 36.8 31.0 17.1 29.1 0.1 100 49.4 37.6 18.5 31.9 0.0
TC-DOBF 77.7 43.4 29.7 33.9 34.8 0.0 100 46.1 36.0 12.6 28.8 0.0
From Scratch Seq2Seq+Attn. 66.5 56.3 39.1 18.4 37.9 1.0 71.8 62.7 46.6 28.5 43.0 0.8
Transformer 61.5 38.9 34.2 16.5 29.1 0.0 67.4 45.6 45.7 26.4 37.4 0.1
Pre-trained CodeGPT 47.3 38.2 32.5 11.5 26.1 1.1 71.2 44.0 38.8 26.7 33.8 0.1
CodeGPT-adapted 48.1 38.2 32.5 12.1 26.2 1.2 68.6 42.4 37.2 27.2 33.1 0.5
CodeBERT 62.3 59.3 37.7 16.2 36.7 0.5 74.7 55.3 38.4 22.5 36.1 0.6
GraphCodeBERT 65.7 59.7 38.9 16.4 37.1 0.7 57.2 60.6 48.4 20.6 40.1 0.4
PLBARTmono 76.4 67.1 42.6 19.3 43.3 2.4 34.4 69.1 57.1 34.0 51.4 1.2
PLBARTmulti 70.4 67.1 42.0 17.6 42.4 2.4 30.8 69.4 56.6 34.5 51.8 1.0

License

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International license, see the LICENSE file for details.

Citation

@article{ahmad-etal-2021-avatar,
  title={AVATAR: A Parallel Corpus for Java-Python Program Translation},
  author={Ahmad, Wasi Uddin and Tushar, Md Golam Rahman and Chakraborty, Saikat and Chang, Kai-Wei},
  journal={arXiv preprint arXiv:2108.11590},
  year={2021}
}
Owner
Wasi Ahmad
I am a Ph.D. student in CS at UCLA.
Wasi Ahmad
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022