[ICSE2020] MemLock: Memory Usage Guided Fuzzing

Overview

MemLock: Memory Usage Guided Fuzzing

MIT License

This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing" accepted for the technical track at ICSE'2020. A pre-print of the paper can be found at ICSE2020_MemLock.pdf.

The repository contains three folders: tool, tests and evaluation.

Tool

MemLock is built on top of the fuzzer AFL. Check out AFL's website for more information details. We provide here a snapshot of MemLock. For simplicity, we provide shell script for the whole installation.

Requirements

  • Operating System: Ubuntu 16.04 LTS (We have tested the artifact on the Ubuntu 16.04)
  • Run the following command to install Docker (Docker version 18.09.7):
    $ sudo apt-get install docker.io
    (If you have any question on docker, you can see Docker's Documentation).
  • Run the following command to install required packages
    $ sudo apt-get install git build-essential python3 cmake tmux libtool automake autoconf autotools-dev m4 autopoint help2man bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev

Clone the Repository

$ git clone https://github.com/wcventure/MemLock-Fuzz.git MemLock --depth=1
$ cd MemLock

Build and Run the Docker Image

Firstly, system core dumps must be disabled as with AFL.

$ echo core|sudo tee /proc/sys/kernel/core_pattern
$ echo performance|sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Run the following command to automatically build the docker image and configure the environment.

# build docker image
$ sudo docker build -t memlock --no-cache ./

# run docker image
$ sudo docker run --cap-add=SYS_PTRACE -it memlock /bin/bash

Usage

The running command line is similar to AFL.

To perform stack memory usage guided fuzzing, run following command line after use memlock-stack-clang to compile the program, as an example shown in tests/run_test1_MemLock.sh

tool/MemLock/build/bin/memlock-stack-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

To perform heap memory usage guided fuzzing, run following command line after use memlock-heap-clang to compile the program, as an example shown in tests/run_test2_MemLock.sh.

tool/MemLock/build/bin/memlock-heap-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

Tests

Before you use MemLock fuzzer, we suggest that you first use two simple examples provided by us to determine whether the Memlock fuzzer can work normally. We show two simple examples to shows how MemLock can detect excessive memory consumption and why AFL cannot detect these bugs easily. Example 1 demonstrates an uncontrolled-recursion bug and Example 2 demonstrates an uncontrolled-memory-allocation bug.

Run for testing example 1

Example 1 demonstrates an uncontrolled-recursion bug. The function fact() in example1.c is a recursive function. With a sufficiently large recursive depth, the execution would run out of stack memory, causing stack-overflow. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 1 with MemLock
$ ./run_test1_MemLock.sh

# run testing example 1 with AFL (Open another terminal)
$ ./run_test1_AFL.sh

In our experiments for testing example 1, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Run for testing example 2

Example 2 demonstrates an uncontrolled-memory-allocation bug. At line 25 in example2.c, the length of the user inputs is fed directly into new []. By carefully handcrafting the input, an adversary can provide arbitrarily large values, leading to program crash (i.e., std::bad_alloc) or running out of memory. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 2 with MemLock
$ ./run_test2_MemLock.sh

# run testing example 2 with AFL (Open another terminal)
$ ./run_test2_AFL.sh

In our experiments for testing example 2, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Evaluation

The fold evaluation contains all our evaluation subjects. After having MemLock installed, you can run the script to build and instrument the subjects. After instrument the subjects you can run the script to perform fuzzing on the subjects.

Build Target Program

In BUILD folder, You can run the script ./build_xxx.sh. It shows how to build and instrument the subject. For example:

# build cxxfilt
$ cd BUILD
$ ./build_cxxfilt.sh

Run for Fuzzing

After instrumenting the subjects, In FUZZ folder you can run the script ./run_MemLock_cxxfilt.sh to run a MemLock fuzzer instance on program cxxfilt. If you want to compare its performance with AFL, you can open another terminal and run the script ./run_AFL_cxxfilt.sh.

# build cxxfilt
$ cd FUZZ
$ ./run_MemLock_cxxfilt.sh

Publications

@inproceedings{wen2020memlock,
Author = {Wen, Cheng and Wang, Haijun and Li, Yuekang and Qin, Shengchao and Liu, Yang, and Xu, Zhiwu and Chen, Hongxu and Xie, Xiaofei and Pu, Geguang and Liu, Ting},
Title = {MemLock: Memory Usage Guided Fuzzing},
Booktitle= {2020 IEEE/ACM 42nd International Conference on Software Engineering},
Year ={2020},
Address = {Seoul, South Korea},
}

Practical Security Impact

CVE ID Assigned By This Work (26 CVEs)

Our tools have found several security-critical vulnerabilities in widely used open-source projects and libraries, such as Binutils, Elfutils, Libtiff, Mjs.

Vulnerability Package Program Vulnerability Type
CVE-2020-36375 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36374 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36373 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36372 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36371 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36370 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36369 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36368 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36367 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36366 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-18392 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2019-6293 Flex 2.6.4 flex CWE-674: Uncontrolled Recursion
CVE-2019-6292 Yaml-cpp v0.6.2 prase CWE-674: Uncontrolled Recursion
CVE-2019-6291 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2019-6290 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2018-18701 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18700 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18484 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2018-17985 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2019-7704 Binaryen 1.38.22 wasm-opt CWE-789: Uncontrolled Memory Allocation
CVE-2019-7698 Bento4 v1.5.1-627 mp4dump CWE-789: Uncontrolled Memory Allocation
CVE-2019-7148 Elfutils 0.175 eu-ar CWE-789: Uncontrolled Memory Allocation
CVE-2018-20652 Tinyexr v0.9.5 tinyexr CWE-789: Uncontrolled Memory Allocation
CVE-2018-18483 Binutils 2.31 c++filt CWE-789: Uncontrolled Memory Allocation
CVE-2018-20657 Binutils 2.31 c++filt CWE-401: Memory Leak
CVE-2018-20002 Binutils 2.31 nm CWE-401: Memory Leak

Video

Links

Owner
Cheng Wen
I am a Ph.D. student at Shenzhen University. My research interest is in the area of Cyber Security(SEC), Programming Language(PL), and Software Engineering(SE).
Cheng Wen
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022